Giải câu 65 bài: Luyện tập sgk Toán 7 tập 1 Trang 137
Câu 65 : Trang 137 - sgk toán 7 tập 1
Các tam giác ABC cân tại A (\(\widehat{A}\) < 900). Vẽ BH ⊥ A (H thuộc AC), CK ⊥ AB (K thuộc AB)
a) Chứng minh rằng AH = AK.
b) Gọi I là giao điểm của BH và CK. Chứng minh rằng tia AI là tia phân giác của góc A.
Do tam giác ABC cân tại A => AB = AC
a) Xét tam giác vuông ABH và tam giác vuông ACK có:
AB = AC (chứng minh trên)
Góc A chung.
=> ∆ABH = ∆ACK (cạnh huyền - góc nhọn)
=> AH = AK (cạnh tương ứng) (đpcm)
b) Xét tam giác vuông AIK và tam giác AIH có:
AK = AH (cmt)
AI cạnh chung
=> ∆AIK = ∆AIH (cạnh huyền- cạnh góc vuông)
=>\(\widehat{IAK}\) = \(\widehat{IAH}\)
=> AI là tia phân giác của góc A. (đpcm)
Từ khóa tìm kiếm Google: giải bài tập 65, gợi ý giải câu 65, cách giải câu 65, hướng dẫn làm bài tập 65 bài 8: Các trường hợp bằng nhau của tam giác vuông
Bình luận