Giải câu 58 bài: Ôn tập chương II Phân thức đại số sgk Toán 8 tập 1 Trang 62
Câu 58 : Trang 62 sgk toán 8 tập 1
Thực hiện các phép tính sau:
a) \(\left( {{{2x + 1} \over {2x - 1}} - {{2x - 1} \over {2x + 1}}} \right):{{4x} \over {10x - 5}}\)
b) \(\left( {{1 \over {{x^2} + x}} - {{2 - x} \over {x + 1}}} \right):\left( {{1 \over x} + x - 2} \right);\)
c) \({1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}.\left( {{1 \over {{x^2} - 2x + 1}} + {1 \over {1 - {x^2}}}} \right).\)
Hướng dẫn: Thực hiện các phép tính giữa các phân thức trong ngoặc trước, sau đó thực hiện phép tính theo thứ tự nhân chia trước, cộng trừ sau. Lưu ý, cộng trừ các phân thức thì phải quy đồng nếu không cũng mẫu thức.
a) \(\left( {{{2x + 1} \over {2x - 1}} - {{2x - 1} \over {2x + 1}}} \right):{{4x} \over {10x - 5}}\)
\(= {{{{\left( {2x + 1} \right)}^2} - {{\left( {2x - 1} \right)}^2}} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}.{{10x + 5} \over {4x}}\)
\(={{4{x^2} + 4x + 1 - 4{x^2} + 4x - 1} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}.{{5\left( {2x + 1} \right)} \over {4x}}\)
\(={{8x.5\left( {2x + 1} \right)} \over {\left( {2x - 1} \right)\left( {2x + 1} \right).4x}} = {{10} \over {2x - 1}}\)
b) \(\left( {{1 \over {{x^2} + x}} - {{2 - x} \over {x + 1}}} \right):\left( {{1 \over x} + x - 2} \right)\)
\(=\left( {{1 \over {x\left( {x + 1} \right)}} + {{x - 2} \over {x + 1}}} \right):{{1 + {x^2} - 2x} \over x}\)
\(={{1 + x\left( {x - 2} \right)} \over {x\left( {x + 1} \right)}}.{x \over {{x^2} - 2x + 1}}\)
\(={{\left( {{x^2} - 2x + 1} \right)x} \over {x\left( {x + 1} \right)\left( {{x^2} - 2x + 1} \right)}}\)
\(= {1 \over {x + 1}}\)
c) \({1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}.\left( {{1 \over {{x^2} - 2x + 1}} + {1 \over {1 - {x^2}}}} \right)\)
\(={1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}.\left[ {{1 \over {{{\left( {x - 1} \right)}^2}}} - {1 \over {\left( {x - 1} \right)\left( {x + 1} \right)}}} \right]\)
\(={1 \over {x - 1}} - {{x\left( {{x^2} - 1} \right)} \over {{x^2} + 1}}.{{x + 1 - \left( {x - 1} \right)} \over {{{\left( {x - 1} \right)}^2}.\left( {x + 1} \right)}}\)
\(={1 \over {x - 1}} - {{x\left( {x - 1} \right)\left( {x + 1} \right)} \over {{x^2} + 1}}.{{x + 1 - x + 1} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}}\)
\(={1 \over {x - 1}} - {{x\left( {x - 1} \right)\left( {x + 1} \right).2} \over {\left( {{x^2} + 1} \right){{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}}\)
\(= {1 \over {x - 1}} - {{2x} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}}\)
\(={{{x^2} + 1 - 2x} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}} = {{{{\left( {x - 1} \right)}^2}} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}} = {{x - 1} \over {{x^2} + 1}}\)
Bình luận