Bài tập về chứng minh nhiều điểm cùng nằm trên một đường tròn
4. Cho đường tròn tâm O, đường kính AB và dây cung CD vuông góc với AB tại điểm H. Gọi I là điểm đối xứng với H qua D, K là trung điểm của đoạn HD. Vẽ dây cung EF đi qua K. Chứng minh bốn điểm E, H, F, I cùng nằm trên một đường tròn.
5. Cho một đường tròn (O) và điểm A nằm ngoài đường tròn đó. Kẻ các tiếp tuyến AB, AC với đường tròn (O) (B và C là các tiếp điểm). Gọi I là giao điểm của OA và BC. Kẻ dây cung DE của đường tròn (O) qua I.
a) Chứng minh bốn điểm A, D, O, E cùng nằm trên một đường tròn.
b) Chứng minh rằng $\widehat{BAD}=\widehat{CAE}$
6. Cho tứ giác ABCD nội tiếp đường tròn tâm O. Chứng minh rằng: AB.CD + BC.AD = AC.BD (định lí Ptô-lê-mê)
4.
Đặt HK = KD = x. Khi đó DI = 2x; KC = 3x.
Ta thấy bốn điểm E, D, F, C cùng nằm trên đường tròn (O) nên KE.KF = KD.KC (1)
Mặt khác KD.KC = x.3x = 3x$^{2}$
KH.KI = x.3x = 3x$^{2}$
$\Rightarrow $ KD.KC = KH.KI (2).
Từ (1) và (2) suy ra KE.KF = KH.KI
Do đó bốn điểm E, H, F, I cùng nằm trên một đường tròn (đpcm)
5.
a) Do bốn điểm B, D, C, E cùng nằm trên đường tròn (O) nên ID.IE = IB.IC = IB$^{2}$ (1)
Áp dụng hệ thức lượng cho $\Delta $ABO vuông với BI là đường cao, ta có:
IB$^{2}$ = IA.IO (2)
Từ (1) và (2) ta được : ID.IE = IA.IO
Chứng tỏ bốn điểm A, D, O, E cùng nằm trên một đường tròn.
b) Từ câu a) ta thấy $\widehat{ODE}=\widehat{OAE}$ (cùng chắn cung OE), $\widehat{OED}=\widehat{OAD}$ (cùng chắn cung OD)
Mà $\Delta $ODE cân tại O nên $\widehat{ODE}=\widehat{OED}$
Do đó $\widehat{OAE}=\widehat{OAD}$ (3)
Chú ý rằng AO là tia phân giác của $\widehat{BAC}$ nên từ (3) suy ra $\widehat{BAE}=\widehat{CAD}$ (4)
Từ (4) dễ dàng suy ra $\widehat{BAD}=\widehat{CAE}$ (đpcm)
6.
Không mất tính tổng quát, giả sử $\widehat{ACD}>\widehat{ACB}$.
Qua C kẻ tia Cx sao cho $\widehat{xCD}=\widehat{ACB}$.
Gọi E là giao điểm của Cx với BD.
Ta thấy $\Delta ABC \sim \Delta DEC$ (g.g)
$\Rightarrow \frac{AB}{ED}=\frac{AC}{CD}$ hay AB.CD = AC.ED (1)
Mặt khác $\Delta ACD \sim \Delta BCE$ (vì $\widehat{BCE}=\widehat{ACD}; \widehat{CAD}=\widehat{CBE}$)
$\Rightarrow \frac{AD}{EB}=\frac{AC}{BC}$ hay BC.AD = AC.EB (2)
Từ (1) và (2) suy ra AB.CD + BC.AD = AC(EB+ED) = AC.BD (đpcm)
Xem toàn bộ: Cách giải bài toán dạng: Tứ giác nội tiếp đường tròn
Giải những bài tập khác
Giải bài tập những môn khác
Môn học lớp 9 KNTT
5 phút giải toán 9 KNTT
5 phút soạn bài văn 9 KNTT
Văn mẫu 9 kết nối tri thức
5 phút giải KHTN 9 KNTT
5 phút giải lịch sử 9 KNTT
5 phút giải địa lí 9 KNTT
5 phút giải hướng nghiệp 9 KNTT
5 phút giải lắp mạng điện 9 KNTT
5 phút giải trồng trọt 9 KNTT
5 phút giải CN thực phẩm 9 KNTT
5 phút giải tin học 9 KNTT
5 phút giải GDCD 9 KNTT
5 phút giải HĐTN 9 KNTT
Môn học lớp 9 CTST
5 phút giải toán 9 CTST
5 phút soạn bài văn 9 CTST
Văn mẫu 9 chân trời sáng tạo
5 phút giải KHTN 9 CTST
5 phút giải lịch sử 9 CTST
5 phút giải địa lí 9 CTST
5 phút giải hướng nghiệp 9 CTST
5 phút giải lắp mạng điện 9 CTST
5 phút giải cắt may 9 CTST
5 phút giải nông nghiệp 9 CTST
5 phút giải tin học 9 CTST
5 phút giải GDCD 9 CTST
5 phút giải HĐTN 9 bản 1 CTST
5 phút giải HĐTN 9 bản 2 CTST
Môn học lớp 9 cánh diều
5 phút giải toán 9 CD
5 phút soạn bài văn 9 CD
Văn mẫu 9 cánh diều
5 phút giải KHTN 9 CD
5 phút giải lịch sử 9 CD
5 phút giải địa lí 9 CD
5 phút giải hướng nghiệp 9 CD
5 phút giải lắp mạng điện 9 CD
5 phút giải trồng trọt 9 CD
5 phút giải CN thực phẩm 9 CD
5 phút giải tin học 9 CD
5 phút giải GDCD 9 CD
5 phút giải HĐTN 9 CD
Trắc nghiệm 9 Kết nối tri thức
Trắc nghiệm 9 Chân trời sáng tạo
Trắc nghiệm 9 Cánh diều
Tài liệu lớp 9
Văn mẫu lớp 9
Đề thi lên 10 Toán
Đề thi môn Hóa 9
Đề thi môn Địa lớp 9
Đề thi môn vật lí 9
Tập bản đồ địa lí 9
Ôn toán 9 lên 10
Ôn Ngữ văn 9 lên 10
Ôn Tiếng Anh 9 lên 10
Đề thi lên 10 chuyên Toán
Chuyên đề ôn tập Hóa 9
Chuyên đề ôn tập Sử lớp 9
Chuyên đề toán 9
Chuyên đề Địa Lý 9
Phát triển năng lực toán 9 tập 1
Bài tập phát triển năng lực toán 9
Bình luận