Giải SBT Toán 8 Cánh diều bài 4 Hình bình hành

Giải chi tiết sách bài tập Toán 8 Cánh diều bài 4: Hình bình hành. Tech12h sẽ hướng dẫn giải tất cả câu hỏi và bài tập với cách giải nhanh và dễ hiểu nhất. Hi vọng, thông qua đó học sinh được củng cố kiến thức và nắm bài học tốt hơn.


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây

B. Bài tập và hướng dẫn giải

Bài tập 16 trang 94 SBT toán 8 tập 1 cánh diều:

Cho tam giác ABC có AB = AC = 3 cm. Từ điểm M thuộc cạnh BC, kẻ MD song song với AC và ME song song với AB (điểm D, E lần lượt thuộc cạnh AB, AC). Tính chu vi của tứ giác ADME.

Bài tập 17 trang 94 SBT toán 8 tập 1 cánh diều:

Cho tam giác ABC có các đường trung tuyến BD và CE. Lấy các điểm H, K sao cho E là trung điểm của CH, D là trung điểm của BK. Chứng minh:

a) Các tứ giác AHBC, AKCB là hình bình hành;

b) A là trung điểm của HK.

Bài tập 18 trang 95 SBT toán 8 tập 1 cánh diều:

Cho hình bình hành ABCD. Trên cạnh AD, BC lần lượt lấy điểm E, F sao cho AE = CF. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho BM = DN. Chứng minh:

a) Tứ giác EMFN là hình bình hành;

b) Bốn đường thẳng AC, BD, EF, MN cùng đi qua một điểm.

Bài tập 19 trang 95 SBT toán 8 tập 1 cánh diều:

Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).

Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).  a) Chứng minh tứ giác BDCH là hình bình hành. b*) Tam giác ABC có điều kiện gì thì ba điểm A, D, H thẳng hàng? c) Tìm mối liên hệ giữa góc A và góc D của tứ giác ABDC.  d) Giả sử H là trung điểm của AM. Chứng minh diện tích của tam giác ABC bằng diện tích của tứ giác BHCD.

a) Chứng minh tứ giác BDCH là hình bình hành.

b*) Tam giác ABC có điều kiện gì thì ba điểm A, D, H thẳng hàng?

c) Tìm mối liên hệ giữa góc A và góc D của tứ giác ABDC. 

d) Giả sử H là trung điểm của AM. Chứng minh diện tích của tam giác ABC bằng diện tích của tứ giác BHCD.

Bài tập 20 trang 95 SBT toán 8 tập 1 cánh diều:

Cho hình bình hành ABCD có $\widehat{A}$ > 90°, AB > BC. Trên đường thẳng vuông góc với BC tại C lấy hai điểm E, F sao cho CE = CF = BC. Trên đường thẳng vuông góc với CD tại C lấy hai điểm P, Q sao cho CP = CQ = CD (Hình 16). Chứng minh:

a) Tứ giác EPFQ là hình bình hành;

b*) AC ⊥ EP.

90°, AB > BC. Trên đường thẳng vuông góc với BC tại C lấy hai điểm E, F sao cho CE = CF = BC. Trên đường thẳng vuông góc với CD tại C lấy hai điểm P, Q sao cho CP = CQ = CD (Hình 16). Chứng minh: a) Tứ giác EPFQ là hình bình hành; b*) AC ⊥ EP." width="260" height="373">

Nội dung quan tâm khác

Thêm kiến thức môn học

Từ khóa tìm kiếm: Giải sách bài tập Toán 8 cánh diều, Giải SBT Toán 8 CD, Giải sách bài tập Toán 8 Cánh diều bài 4 Hình bình hành

Bình luận

Giải bài tập những môn khác