Giải SBT Toán 11 chân trời Bài 1 Giới hạn của dãy số
Giải chi tiết sách bài tập Toán 11 tập 1 Chân trời bài 1 Giới hạn của dãy số. Tech12h sẽ hướng dẫn giải tất cả câu hỏi và bài tập với cách giải nhanh và dễ hiểu nhất. Hi vọng, thông qua đó học sinh được củng cố kiến thức và nắm bài học tốt hơn.
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
Bài 1: Tìm các giới hạn sau:
a) $lim(2+\frac{5}{n})$
b) $lim(\frac{3}{n}-\frac{2}{n^{2}})$
c) $lim(3-\frac{4}{n})(2+\frac{5}{n^{2}})$
d) $lim\frac{3-\frac{3}{n}}{1+\frac{1}{n^{3}}}$
Trả lời:
a) $lim(2+\frac{5}{n})=2+0=2$
b) $lim(\frac{3}{n}-\frac{2}{n^{2}})=0-0=0$
c) $lim(3-\frac{4}{n})(2+\frac{5}{n^{2}})=(3-0).(2+0)=6$
d) $lim\frac{3-\frac{3}{n}}{1+\frac{1}{n^{3}}}=\frac{3-0}{1+0}=3$
Bài 2: Tìm các giới hạn sau:
a) $lim\frac{2n-3}{6n+1}$
b) $lim\frac{3n-1}{n^{2}+n}$
c) $lim\frac{(2n-1)(2n+3)}{2n^{2}+4}$
d) $lim\frac{4n+1}{\sqrt{n^{2}+3n}+n}$
e) $lim\sqrt{n}(\sqrt{n+1}-\sqrt{n})$
g) $lim\frac{1}{\sqrt{n^{2}+n}-n}$
Trả lời:
a) $lim\frac{2n-3}{6n+1}=lim\frac{2-\frac{3}{n}}{6+\frac{1}{n}}=\frac{2-0}{6+0}=\frac{2}{6}=\frac{1}{3}$
b) $lim\frac{3n-1}{n^{2}+n}=\frac{\frac{3}{n}-\frac{1}{n^{2}}}{1+\frac{1}{n}}=\frac{0-0}{1+0}=0$
c) $lim\frac{(2n-1)(2n+3)}{2n^{2}+4}=lim\frac{(2-\frac{1}{n})(2+\frac{3}{n})}{2+\frac{4}{n^{2}}}=\frac{2.2}{2}=2$
d) $lim\frac{4n+1}{\sqrt{n^{2}+3n}+n}=lim\frac{4+\frac{1}{n}}{\sqrt{1+\frac{3}{n}}+1}=\frac{4}{1+1}=2$
e) $lim\sqrt{n}(\sqrt{n+1}-\sqrt{n})$
$=lim\frac{\sqrt{n}(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}$
$=lim\frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$
$=lim\frac{1}{\sqrt{1+\frac{1}{n}}+1}$
$=\frac{1}{\sqrt{1+0}-1}=\frac{1}{2}$
g) $lim\frac{1}{\sqrt{n^{2}+n}-n}$
$=lim\frac{\sqrt{n^{2}+n}+n}{(\sqrt{n^{2}+n}-n)(\sqrt{n^{2}+n}+n)}$
$=lim\frac{\sqrt{n^{2}+n}+n}{n}$
$=lim(\sqrt{1+\frac{1}{n}}+1)=2$
Bài 3: Tìm các giới hạn sau:
a) $lim(\frac{\sqrt{3}}{2})^{n}$
b) $lim\frac{3^{n}}{4^{n}-1}$
c) $lim\frac{3^{n}-2^{n}}{3^{n}+2^{n}}$
d) $lim\frac{4^{n+1}}{3^{n}+4^{n}}$
Trả lời:
a) $lim(\frac{\sqrt{3}}{2})^{n}=0$ (Vì $\frac{\sqrt{3}}{2} < 1$)
b) $lim\frac{3^{n}}{4^{n}-1}=lim\frac{(\frac{3}{4})^{n}}{1-(\frac{1}{4})^{n}}=\frac{0}{1-0}=0$
c) $lim\frac{3^{n}-2^{n}}{3^{n}+2^{n}}=lim\frac{1-(\frac{2}{3})^{n}}{1+(\frac{2}{3})^{n}}=\frac{1-0}{1+0}=1$
d) $lim\frac{4^{n+1}}{3^{n}+4^{n}}=lim\frac{4}{(\frac{3}{4})^{n}+1}=\frac{4}{0+1}=4$
Bài 4: Cho hai dãy số $(u_{n})$ và $(v_{n})$ có $limu_{n}=3, limv_{n}=4$. Tìm các giới hạn sau:
a) $lim(3u_{n}-4)$
b) $lim(u_{n}+2v_{n})$
c) $lim(u_{n}-v_{n})^{2}$
d) $lim\frac{-2u_{n}}{v_{n}-2u_{n}}$
Trả lời:
a) $lim(3u_{n}-4)=3limu_{n}-4=3.3-4=5$
b) $lim(u_{n}+2v_{n})=limu_{n}+2limv_{n}=3+2.4=11$
c) $lim(u_{n}-v_{n})^{2}=lim(u_{n}^{2}-2u_{n}v_{n}+v_{n}^{2})$
$=(limu_{n})^{2}-2limu_{n}.limv_{n}+(limv_{n})^{2}=3^{2}-2.3.4+4^{2}=1$
d) $lim\frac{-2u_{n}}{v_{n}-2u_{n}}=\frac{-3.2}{4-2.3}=3$
Bài 5: Cho dãy số $(u_{n})$ thoả mãn $limnu_{n}=3$. Tìm giới hạn $lim\frac{2n+3}{n^{2}u_{n}}$
Trả lời:
$lim\frac{2n+3}{n^{2}u_{n}}$
$=lim(\frac{2n+3}{n}.\frac{1}{nu_{n}})$
$=lim\frac{2n+3}{n}.lim\frac{1}{nu_{n}}$
$=lim(2+\frac{3}{n}).\frac{1}{limnu_{n}}$
$=2.\frac{1}{3}=\frac{2}{3}$
Bài 6: Tìm các giới hạn sau:
a) $lim(1+3n-n^{2})$
b) $lim\frac{n^{3}+3n}{2n-1}$
c) $lim(\sqrt{n^{2}-n}+n)$
d) $lim(3^{n+1}-5^{n})$
Trả lời:
a) $lim(1+3n-n^{2})=lim[n^{2}.(\frac{1}{n^{2}}+\frac{3}{n}-1)]=-\infty$
b) $lim\frac{n^{3}+3n}{2n-1}=lim[n^{2}.\frac{1+\frac{3}{n^{2}}}{2-\frac{1}{n}}]=+\infty$
c) $lim(\sqrt{n^{2}-n}+n)=lim[n(\sqrt{1-\frac{1}{n}}+1)]=+\infty$
d) $lim(3^{n+1}-5^{n})=lim{5^{n}[3.(\frac{3}{5})^{n}-1]}=-\infty$
Bài 7: Tuỳ theo giá trị của a > 0, tìm giới hạn $lim\frac{a^{n}}{a^{n}+1}$
Trả lời:
Nếu 0 < a < 1 thì $lima^{n}=0$ nên $lim\frac{a^{n}}{a^{n}+1}=\frac{lima^{n}}{lima^{n}+1}=\frac{0}{0+1}=0$
Nếu a = 1 thì $lim\frac{a^{n}}{a^{n}+1}=lim\frac{1^{n}}{1^{n}+1}=lim\frac{1}{1+1}=lim\frac{1}{2}=\frac{1}{2}$
Nếu a > 1, ta viết $\frac{a^{n}}{a^{n}+1}=\frac{1}{1+(\frac{1}{a})^{n}}$
Do a > 1 nên $0 <\frac{1}{a}<1$, suy ra $lim(\frac{1}{a})^{n}=0$.
Suy ra $lim\frac{a^{n}}{a^{n}+1}=lim\frac{1}{1+(\frac{1}{a})^{n}}=\frac{1}{1+lim(\frac{1}{a})^{n}}=\frac{1}{1+0}=1$
Vậy $lim\frac{a^{n}}{a^{n}+1}$ bằng 0 nếu 0 < a < 1, bằng $\frac{1}{2}$ nếu a = 1 và bằng 1 nếu a > 1
Bài 8: Tính tổng của các cấp số nhân lùi vô hạn:
a) $1-\frac{1}{5}+\frac{1}{5^{2}}-\frac{1}{5^{3}}+...+(-\frac{1}{5})^{n}+...$
b) $2+\frac{2^{2}}{3}+\frac{2^{3}}{3^{2}}+...+\frac{2^{n}}{3^{n-1}}+...$
Trả lời:
a) $1-\frac{1}{5}+\frac{1}{5^{2}}-\frac{1}{5^{3}}+...+(-\frac{1}{5})^{n}+...$
$=1.\frac{1}{1-(-\frac{1}{5})}=\frac{5}{6}$
b) $2+\frac{2^{2}}{3}+\frac{2^{3}}{3^{2}}+...+\frac{2^{n}}{3^{n-1}}+...$
$=2.\frac{1}{1-\frac{2}{3}}=6$
Bài 9: Viết các số thập phân vô hạn tuần hoàn sau thành phân số:
a) 0,(7) = 0,777…;
b) 1,(45) = 1,454545…
Trả lời:
a) $0,(7)=\frac{7}{9}$
b) $1,(45)=1+0,(45)=1+\frac{45}{99}=1+\frac{5}{11}=\frac{16}{11}$
Bài 10: Tại một nhà máy, người ta đo được rằng 80% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với $100m^{3}$ ban đầu được sử dụng lần đầu tại nhà máy, sau quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?
Trả lời:
Lượng nước được sử dụng tại nhà máy qua các lần lần lượt là: 100; 100.80%; 100.(80%)$^{2}$; 100.(80%)$^{3}$;…
Đây là dãy số cấp số nhân lùi vô hạn với q = 80% = 0,8
Vậy tổng lượng nước nhà máy sử dụng được là:
$\frac{100}{1-0,8}=500 (m^{3})$
Bài 11: Cho tam giác $OA_{1}A_{2}$ vuông cânt ại $A_{2}$ có cạnh huyền $OA_{1}$ bằng a. Bên ngoài tam giác $OA_{1}A_{2}$, vẽ tam giác $OA_{2}A_{3}$ vuông cân tại $A_{3}$. Tiếp theo, bên ngoài tam giác $OA_{2}A_{3}$, vẽ tam giác $OA_{3}A_{4}$ vuông cân tại $A_{4}$. Cứ tiếp tục quá trình như trên, ta vẽ được một dãy các hình tam giác vuông cân (Hình 2). Tính độ dài đường gấp khúc $A_{1}A_{2}A_{3}A_{4}...$
Trả lời:
Ta có các góc $\widehat{A_{1}OA_{2}}, \widehat{A_{2}OA_{3}}, \widehat{A_{3}OA_{4}},...$ đều bằng $45^{o}$. Ta có:
$A_{1}A_{2}=OA_{2}=OA_{1}.cos45^{o}=a\frac{\sqrt{2}}{2}$
$A_{2}A_{3}=OA_{3}=OA_{2}.cos45^{o}=a\frac{\sqrt{2}}{2}.\frac{\sqrt{2}}{2}=a.(\frac{\sqrt{2}}{2})^{2}$
$A_{3}A_{4}=OA_{4}=OA_{3}.cos45^{o}=a(\frac{\sqrt{2}}{2})^{2}.\frac{\sqrt{2}}{2}=a(\frac{\sqrt{2}}{2})^{3}$
….
Vậy độ dài các đoạn thẳng $A_{1}A_{2},A_{2}A_{3},A_{3}A_{4},...$ tạo thành cấp số nhân lùi vô hạn với số hạng đầu bằng $\frac{a\sqrt{2}}{2}$ và công bội bằng $\frac{\sqrt{2}}{2}$.
Do đó độ dài đường gấp khúc $A_{1}A_{2}A_{3}A_{4}...$ là:
$\frac{a\sqrt{2}}{2}.\frac{1}{1-\frac{\sqrt{2}}{2}}=\frac{a\sqrt{2}}{2-\sqrt{2}}=a(1+\sqrt{2})$
Bài 12: Cho tam giác OMN vuông cân tại O, OM = ON = 1. Trong tam giác OMN, vẽ hình vuông $OA_{1}B_{1}C_{1}$ sao cho các đỉnh $A_{1}, B_{1}, C_{1}$ lần lượt nằm trên các cạnh OM, MN< ON. Trong tam giác $A_{1}MB_{1}$, vẽ hình vuông $A_{1}A_{2}B_{2}C_{2}$ sao cho các đỉnh $A_{2}, B_{2}, C_{2}$ lần lượt nằm trên các cạnh $A_{1}M, MB_{1}, A_{1}B_{1}$. Tiếp tục quá trình đó, ta được một dãy các hình vuông (Hình 3). Tính tổng diện tích các hình vuông này.
Trả lời:
Độ dài cạnh của các hình vuông lần lượt là:
$a_{1}=\frac{1}{2}$
$a_{2}=\frac{1}{2}a_{1}=\frac{1}{2}.\frac{1}{2}=(\frac{1}{2})^{2}$
$a_{3}=\frac{1}{2}a_{2}=\frac{1}{2}.(\frac{1}{2})^{2})=(\frac{1}{2})^{3}$
…
Diện tích của các hình vuông lần lượt là:
$S_{1}=a_{1}^{2}=(\frac{1}{2})^{2}=\frac{1}{4}$
$S_{2}=a_{2}^{2}=[(\frac{1}{2})^{2}]^{2}=(\frac{1}{4})^{2}$
$S_{3}=a_{3}^{2}=[(\frac{1}{2})^{3}]^{2}=[(\frac{1}{2})^{2}]^{3}=(\frac{1}{4})^{3}$
….
Các diện tích $S_{1},S_{2},S_{3},...$ tạo thành cấp số nhân lùi vô hạn với số hạng đầu là $S_{1}=\frac{1}{4}$ và công bội bằng $\frac{1}{4}$
Do đó, tổng diện tích các hình vuông là $S=\frac{1}{4}.\frac{1}{1-\frac{1}{4}}=\frac{1}{3}$
Bài 13: Trong mặt phẳng toạ độ Oxy, đường thẳng d: x + y = 2 cắt trục hoành tại điểm A và cắt đường thẳng $d_{n}$: $y=\frac{2n+1}{n}x$ tại điểm $P_{n} ( n\in \mathbb{N}^{*})$. Kí hiệu $S_{n}$ là diện tích của tam giác $OAP_{n}$. Tìm $limS_{n}$.
Trả lời:
Ta có: $A(2;0); P_{n}(\frac{2n}{3n+1};\frac{4n+2}{3n+1}); OA=2;AP_{n}=\frac{4n+2}{3n+1}.\sqrt{2}; \widehat{OAP_{n}} = 45^{o}$
$S_{n}=\frac{1}{2}.OA.AP_{n}.sin\widehat{OAP_{n}}=\frac{1}{2}.2\frac{4n+2}{3n+1}.\sqrt{2}.\frac{\sqrt{2}}{2}=\frac{4n+2}{3n+1}$
$limS_{n}=lim\frac{4n+2}{3n+1}=lim\frac{4+\frac{2}{n}}{3+\frac{1}{n}}=\frac{4}{3}$
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
Nội dung quan tâm khác
Thêm kiến thức môn học
Giải bài tập những môn khác
Giải sgk lớp 11 KNTT
Giải sgk lớp 11 CTST
Giải sgk lớp 11 cánh diều
Giải SBT lớp 11 kết nối tri thức
Giải SBT lớp 11 chân trời sáng tạo
Giải SBT lớp 11 cánh diều
Giải chuyên đề học tập lớp 11 kết nối tri thức
Giải chuyên đề toán 11 kết nối tri thức
Giải chuyên đề ngữ văn 11 kết nối tri thức
Giải chuyên đề vật lí 11 kết nối tri thức
Giải chuyên đề hóa học 11 kết nối tri thức
Giải chuyên đề sinh học 11 kết nối tri thức
Giải chuyên đề kinh tế pháp luật 11 kết nối tri thức
Giải chuyên đề lịch sử 11 kết nối tri thức
Giải chuyên đề địa lí 11 kết nối tri thức
Giải chuyên đề mĩ thuật 11 kết nối tri thức
Giải chuyên đề âm nhạc 11 kết nối tri thức
Giải chuyên đề công nghệ chăn nuôi 11 kết nối tri thức
Giải chuyên đề công nghệ cơ khí 11 kết nối tri thức
Giải chuyên đề tin học 11 định hướng Khoa học máy tính kết nối tri thức
Giải chuyên đề tin học 11 định hướng Tin học ứng dụng kết nối tri thức
Giải chuyên đề quốc phòng an ninh 11 kết nối tri thức
Giải chuyên đề hoạt động trải nghiệm hướng nghiệp 11 kết nối tri thức
Giải chuyên đề học tập lớp 11 chân trời sáng tạo
Giải chuyên đề học tập lớp 11 cánh diều
Trắc nghiệm 11 Kết nối tri thức
Trắc nghiệm 11 Chân trời sáng tạo
Trắc nghiệm 11 Cánh diều
Bộ đề thi, đề kiểm tra lớp 11 kết nối tri thức
Đề thi Toán 11 Kết nối tri thức
Đề thi ngữ văn 11 Kết nối tri thức
Đề thi vật lí 11 Kết nối tri thức
Đề thi sinh học 11 Kết nối tri thức
Đề thi hóa học 11 Kết nối tri thức
Đề thi lịch sử 11 Kết nối tri thức
Đề thi địa lí 11 Kết nối tri thức
Đề thi kinh tế pháp luật 11 Kết nối tri thức
Đề thi công nghệ cơ khí 11 Kết nối tri thức
Đề thi công nghệ chăn nuôi 11 Kết nối tri thức
Đề thi tin học ứng dụng 11 Kết nối tri thức
Đề thi khoa học máy tính 11 Kết nối tri thức
Bộ đề thi, đề kiểm tra lớp 11 chân trời sáng tạo
Bộ đề thi, đề kiểm tra lớp 11 cánh diều
Đề thi Toán 11 Cánh diều
Đề thi ngữ văn 11 Cánh diều
Đề thi vật lí 11 Cánh diều
Đề thi sinh học 11 Cánh diều
Đề thi hóa học 11 Cánh diều
Đề thi lịch sử 11 Cánh diều
Đề thi địa lí 11 Cánh diều
Đề thi kinh tế pháp luật 11 Cánh diều
Đề thi công nghệ cơ khí 11 Cánh diều
Đề thi công nghệ chăn nuôi 11 Cánh diều
Đề thi tin học ứng dụng 11 Cánh diều
Đề thi khoa học máy tính 11 Cánh diều
Bình luận