Giải SBT Toán 11 chân trời Bài tập cuối chương V
Giải chi tiết sách bài tập Toán 11 tập 1 Chân trời Bài tập cuối chương V. Tech12h sẽ hướng dẫn giải tất cả câu hỏi và bài tập với cách giải nhanh và dễ hiểu nhất. Hi vọng, thông qua đó học sinh được củng cố kiến thức và nắm bài học tốt hơn.
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
A. TRẮC NGHIỆM
Trả lời các câu hỏi 1 - 5 dựa trên đồ thị thể hiện điểm thi đánh giá năng lực của một trường đại học vào năm 2020 dưới đây.
Bài 1: Tổng số học sinh tham gia kì thi đánh giá năng lực trên là
A. 780.
B. 787.
C. 696.
D. 697.
Trả lời:
Đáp án đúng là: B
Tổng số học sinh tham gia kì thi đánh giá năng lực trên là
1 + 8 + 24 + 54 + 95 + 95 + 133 + 122 +104 + 62 + 55 + 21 + 12 + 1 = 787 (học sinh).
Bài 2: Giá trị đại diện cho nhóm chứa mốt của mẫu số liệu ghép nhóm trên là
A. 625,5.
B. 675,5.
C. 725,5.
D. 775,5.
Trả lời:
Từ đồ thị và do số học sinh là số nguyên nên ta hiệu chỉnh lại bảng số liệu như sau:
Điểm | Số học sinh |
[350,5; 400,5) | 1 |
[400,5; 450,5) | 8 |
[450,5; 500,5) | 24 |
[500,5; 550,5) | 54 |
[550,5; 600,5) | 95 |
[600,5; 650,5) | 95 |
[650,5; 700,5) | 133 |
[700,5; 750,5) | 122 |
[750,5; 800,5) | 104 |
[800,5; 850,5) | 62 |
[850,5; 900,5) | 55 |
[900,5; 950,5) | 21 |
[950,5; 1 000,5) | 12 |
[1 000,5; 1 050,5) | 1 |
Nhóm chứa mốt của mẫu số liệu ghép nhóm trên là nhóm [650,5; 700,5).
Giá trị đại diện cho nhóm đó là $\frac{1}{2}(650,5 + 700,5) = 675,5$.
Bài 3: Giá trị đại diện cho nhóm chứa trung vị của mẫu số liệu ghép nhóm trên là
A. 625,5.
B. 675,5.
C. 725,5.
D. 775,5.
Trả lời:
Đáp án đúng là: B
Gọi $x_{1}; x_{2}; x_{3};...; x_{787}$ là mẫu số liệu được xếp theo thứ tự không giảm.
Cỡ mẫu n = 787 là số lẻ nên trung vị của mẫu số liệu là: $M_{e} = x_{394}$. Do $x_{394}$ thuộc nhóm [650,5; 700,5) nên giá trị đại diện cho nhóm đó là: $\frac{1}{2}(650,5 + 700,5) = 675,5$.
Bài 4: Giá trị đại diện cho nhóm chứa tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là
A. 625,5.
B. 675,5.
C. 725,5.
D. 775,5.
Trả lời:
Đáp án đúng là: A
Gọi $x_{1}; x_{2}; x_{3};...; x_{787}$ là mẫu số liệu được xếp theo thứ tự không giảm.
Tứ phân vị thứ nhất của mẫu số liệu $x_{1}; x_{2}; x_{3};...; x_{787}$ là $Q_{1} = x_{197}$. Do $x_{197}$ thuộc nhóm [600,5; 650,5) nên giá trị đại diện cho nhóm chứa tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là $\frac{1}{2}(600,5 + 650,5) = 625,5.$
Bài 5: Giá trị đại diện cho nhóm chứa tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là
A. 625,5.
B. 675,5.
C. 725,5.
D. 775,5.
Trả lời:
Đáp án đúng là: D
Tứ phân vị thứ ba của mẫu số liệu $x_{1}; x_{2}; x_{3};...; x_{787}$ là $x_{591}$. Do $x_{591}$ thuộc nhóm [750,5; 800,5) nên giá trị đại diện cho nhóm chứa tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là $\frac{1}{2}(750,5 + 800,5) = 775,5$.
Trả lời các câu hỏi 6 – 10 dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.
Nhóm | Chiều cao (cm) | Số học sinh |
1 | [150; 153) | 7 |
2 | [153; 156) | 13 |
3 | [156; 159) | 40 |
4 | [159; 162) | 21 |
5 | [162; 165) | 13 |
6 | [165; 168) | 6 |
Bài 6: 160,5 là giá trị đại diện cho nhóm
A. 2.
B. 3.
C. 4.
D. 5.
Trả lời:
Đáp án đúng là: C
Xét nhóm [159; 162) có giá trị đại diện là $\frac{159+162}{2} = 160,5$.
Vậy 160,5 là giá trị đại diện cho nhóm [159; 162) là nhóm 4.
Bài 7: Mốt của mẫu số liệu ghép nhóm trên (làm tròn kết quả đến hàng phần trăm) là
A. 157,76.
B. 158,25.
C. 157,5.
D. 160,28.
Trả lời:
Đáp án đúng là: A
Nhóm chứa mốt của mẫu số liệu ghép nhóm trên là nhóm [156; 159).
Do đó $u_{m} = 156; n_{m-1} = 13, n_{m} = 40, n_{m+1} = 21, u_{m+1} = 159$ .
Mốt của mẫu số liệu trên là:
$M_{O}=156+\frac{40-13}{(40-13)+(40-21)}.(159-156) = \frac{7257}{46} \approx 157,76$.
Bài 8: Trung vị của mẫu số liệu ghép nhóm trên là
A. 157,76.
B. 157,25.
C. 158,25.
D. 160,45.
Trả lời:
Đáp án đúng là: C
Gọi $x_{1}; x_{2}; x_{3};...; x_{100}$ là mẫu số liệu được xếp theo thứ tự không giảm.
Cỡ mẫu n = 100 là số chẵn nên trung vị của mẫu số liệu là $\frac{1}{2}(x_{50}+x_{51})$. Do $x_{50}$ và $x_{51}$ thuộc nhóm [156; 159) nên trung vị của mẫu số liệu ghép nhóm trên là:
$M_{e}=156+\frac{\frac{100}{2}-(7+13)}{40}.(159-156)=\frac{633}{4}=158,25$.
Bài 9: Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên (làm tròn kết quả đến hàng phần trăm) là
A. 156,25.
B. 157,5.
C. 156,38.
D. 157,54.
Trả lời:
Đáp án đúng là: C
Cỡ mẫu n = 100 là số chẵn nên tứ phân vị thứ nhất của mẫu số liệu là $\frac{1}{2}(x_{25}+x_{26})$. Do $x_{25}$ và $x_{26}$ thuộc nhóm [156; 159) nên tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là:
$Q_{1}=156+\frac{\frac{100}{4}-(7+13)}{40}.(159-156)= \frac{1251}{8} \approx 156,38$.
Bài 10: Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên (làm tròn kết quả đến hàng phần trăm) là:
A. 160,52.
B. 161,52.
C. 161,14.
D. 162,25.
Trả lời:
Đáp án đúng là: C
Cỡ mẫu n = 100 là số chẵn nên tứ phân vị thứ ba của mẫu số liệu là $\frac{1}{2}(x_{75}+x_{76})$. Do $x_{75}$ và $x_{76}$ thuộc nhóm [159; 162) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là:
$Q_{3}=159+\frac{\frac{3.100}{4}-(7+13-40)}{21}.(162-159)= \frac{1128}{7} \approx 161,14$
B. TỰ LUẬN
Bài 1: Một công ty bảo hiểm thống kê lại độ tuổi các khách hàng mua bảo hiểm xe ô tô ở bảng sau:
Độ tuổi | [25; 30) | [30; 35) | [35; 40) | [40; 45) | [45; 50) | [50; 55) |
Số khách hàng | 25 | 38 | 62 | 42 | 37 | 29 |
Hãy ước lượng số trung bình, mốt và các tứ phân vị của mẫu số liệu ghép nhóm trên.
Trả lời:
Bảng tần số ghép nhóm bao gồm giá trị đại diện của các nhóm như sau:
Độ tuổi | [25; 30) | [30; 35) | [35; 40) | [40; 45) | [45; 50) | [50; 55) |
Giá trị đại diện | 27,5 | 32,5 | 37,5 | 42,5 | 47,5 | 52,5 |
Số khách hàng | 25 | 38 | 62 | 42 | 37 | 29 |
Cỡ mẫu n = 233.
• Số trung bình của mẫu số liệu ghép nhóm là:
$\bar{x}=\frac{27,5.25+32,5.38+37,5.62+42,5.42+47,5.37+52,5.29}{233}=\frac{18625}{466} \approx 39,97$
• Nhóm chứa mốt của mẫu số liệu ghép nhóm là [35; 40)
Do đó, $u_{m}=35; n_{m-1}=38; n_{m}=62; n_{m+1}= 42; u_{m + 1}-u_{m}= 40 - 35 = 5$.
Mốt của mẫu số liệu ghép nhóm là:
$M_{O}=35+\frac{62-38}{(62-38)+(62-42)}.5= \frac{415}{11}$.
• Gọi $x_{1}; x_{2}; x_{3};...; x_{233}$ là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có:
$x_{1}, ..., x_{25}\in [25; 30); x_{26}, ..., x_{63}\in [30; 35); x_{64}, ..., x_{125}\in [35; 40)$; $x_{126}, ..., x_{167}\in [40; 45); x_{168}, ..., x_{204}\in [45; 50); x_{205}, ..., x_{233}\in [50; 55)$.
Tứ phân vị thứ hai của mẫu số liệu $x_{1}; x_{2}; x_{3};...; x_{233}$ là $x_{117}\in [35; 40)$. Do đó, tứ phân vị thứ hai của mẫu số liệu ghép nhóm là
$Q_{2}=35+\frac{\frac{233}{2}-(25+38)}{62}.(40-35)= \frac{4875}{124}$.
Tứ phân vị thứ nhất của mẫu số liệu $x_{1}; x_{2}; x_{3};...; x_{233}$ là $\frac{1}{2}(x_{58}+x_{59})$. Do $x_{58}$ và $x_{59}$ thuộc nhóm [30; 35) nên tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là
$Q_{1}=30+\frac{\frac{233}{4}-25}{38}.(35-30)=\frac{275}{8}$
Tứ phân vị thứ ba của mẫu số liệu $x_{1}; x_{2}; x_{3};...; x_{233}$ là $\frac{1}{2}(x_{175}+x_{176})$. Do $x_{175}$ và $x_{176}$ thuộc nhóm [45; 50) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm là
$Q_{3}=45+\frac{\frac{3.233}{4}-(25+38+62+42)}{37}.(50-45)=\frac{6815}{148}$
Bài 2: Các bạn học sinh một lớp thống kê số túi nhựa mà gia đình bạn đó sử dụng trong một tuần. Kết quả được tổng hợp lại ở bảng sau:
Số túi | [5; 9] | [10; 14] | [15; 19] | [20; 24] | [25; 29] |
Số gia đình | 8 | 15 | 12 | 7 | 2 |
a) Hãy ước lượng số trung bình và mốt của mẫu số liệu trên.
b) Cô giáo dự định trao danh hiệu “Gia đình xanh” cho 25% gia đình các bạn sử dụng ít túi nhựa nhất. Cô giáo nên trao danh hiệu cho các gia đình dùng không quá bao nhiêu túi nhựa?
Trả lời:
a) Do số gia đình là số nguyên nên ta hiệu chỉnh lại bảng số liệu bao gồm giá trị đại diện như sau:
Số túi | [4,5; 9,5) | [9,5; 14,5) | [14,5; 19,5) | [19,5; 24,5) | [24,5; 29,5) |
Giá trị đại diện | 7 | 12 | 17 | 22 | 27 |
Số gia đình | 8 | 15 | 12 | 7 | 2 |
Cỡ mẫu n = 44.
• Số trung bình của mẫu số liệu ghép nhóm là:
$\bar{x}=\frac{7.8+12.15+17.12+22.7+27.2}{44}=\frac{162}{11} \approx 14,73$
• Nhóm chứa mốt của mẫu số liệu ghép nhóm là [9,5; 14,5).
Do đó, $u_{m}=9,5; n_{m-1}= 8; n_{m}=15; n_{m+1}=12; u_{m + 1}- u_{m} = 14,5-9,5 = 5$.
Mốt của mẫu số liệu ghép nhóm là:
$M_{0}=9,5+\frac{15-8}{(15-8)+(15-12)}.5=13$
b) Gọi $x_{1}; x_{2}; x_{3};...; x_{44}$ là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có:
$x_{1}, ..., x_{8}\in [4,5; 9,5); x_{9}, ..., x_{23}\in [9,5; 14,5); x_{24}, ..., x_{35}\in [14,5; 19,5)$; $x_{36}, ..., x_{42}\in [19,5; 24,5); x_{43}, x_{44}\in [24,5; 29,5)$.
Tứ phân vị thứ nhất của mẫu số liệu $x_{1}; x_{2}; x_{3};...; x_{44}$ là $\frac{1}{2}(x_{11}+x_{12})$. Do $x_{11}$ và $x_{12}$ thuộc nhóm [9,5; 14,5) nên tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là
$Q_{1}=9,5+\frac{\frac{44}{4}-(8+0)}{15}.(14,5-9,5)=\frac{21}{2}=10,5$
Do đó, cô giáo nên trao danh hiệu cho gia đình các bạn dùng không quá 10 túi nhựa.
Bài 3: Bảng sau thống kê doanh số bán hàng của các nhân viên một trung tâm thương mại trong một ngày.
Doanh số (triệu đồng) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số nhân viên | 4 | 8 | 12 | 7 | 5 |
a) Hãy ước lượng số trung bình, mốt và trung vị của mẫu số liệu ghép nhóm trên.
b) Trung tâm thương mại dự định sẽ thưởng cho 25% số nhân viên có doanh số bán hàng cao nhất. Theo mẫu số liệu trên, trung tâm thương mại nên khen thưởng các nhân viên có doanh số bán hàng ít nhất là bao nhiêu?
Trả lời:
a) Bảng tần số ghép nhóm bao gồm giá trị đại diện của các nhóm như sau:
Doanh số (triệu đồng) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Giá trị đại diện | 25 | 35 | 45 | 55 | 65 |
Số nhân viên | 4 | 8 | 12 | 7 | 5 |
Cỡ mẫu n = 36.
• Số trung bình của mẫu số liệu ghép nhóm là:
$\bar{x}=\frac{25.4+35.8+45.12+55.7+65.5}{36}=\frac{815}{18}$
• Nhóm chứa mốt của mẫu số liệu ghép nhóm là [40; 50).
Do đó, $u_{m} = 40; n_{m-1} = 8; n_{m} = 12; n_{m+1} = 7; u_{m + 1}-u_{m} = 50 -40 = 10$.
Mốt của mẫu số liệu ghép nhóm là:
$M_{O}=40+\frac{12-8}{(12-8)+(12-7)}.10=\frac{400}{9}$
• Gọi $x_{1}; x_{2}; x_{3};...; x_{36}$ là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có:
$x_{1}, ..., x_{4}\in [20; 30); x_{5}, ..., x_{12}\in [30; 40); x_{13}, ..., x_{24}\in [40; 50)$; $x_{25}, ..., x_{31}\in [50; 60); x_{32}, ..., x_{36}\in [60; 70)$.
Cỡ mẫu n = 36 là số chẵn nên trung vị $M_{e}=\frac{1}{2}(x_{18}+x_{19})$. Do $x_{18}$ và $x_{19}$ thuộc nhóm [40; 50) nên trung vị của mẫu số liệu là
$M_{e}=40+\frac{\frac{36}{2}-(4+8)}{12}.(50-40)=45$
b) Tứ phân vị thứ ba của mẫu số liệu $x_{1}; x_{2}; x_{3}; ...; x_{36}$ là $\frac{1}{2}(x_{27}+x_{28})$. Do $x_{27}$ và $x_{28}$ thuộc nhóm [50; 60) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm là
$Q_{3}=50+\frac{\frac{3.36}{4}-(4+8+12)}{7}.(60-50)=\frac{380}{7} \approx 54,29$
Do đó, trung tâm thương mại nên khen thưởng các nhân viên có doanh số bán hàng một ngày ít nhất là 54,29 triệu đồng.
Bài 4: Một cửa hàng sách thống kê số truyện thiếu nhi bán được trong hai tháng ở bảng sau:
Số sách | [14; 20] | [21; 27] | [28; 34] | [35; 41] | [42; 48] |
Số ngày | 5 | 7 | 25 | 15 | 9 |
Hãy ước lượng số trung bình, mốt và các tứ phân vị của mẫu số liệu ghép nhóm trên.
Trả lời:
a) Do số ngày là số nguyên nên ta hiệu chỉnh bảng tần số ghép nhóm bao gồm giá trị đại diện của các nhóm như sau:
Số sách | [13,5; 20,5) | [20,5; 27,5) | [27,5; 34,5) | [34,5; 41,5) | [41,5; 48,5) |
Giá trị đại diện | 17 | 24 | 31 | 38 | 45 |
Số ngày | 5 | 7 | 25 | 15 | 9 |
Cỡ mẫu n = 61.
• Số trung bình của mẫu số liệu ghép nhóm là:
$\bar{x}=\frac{17.5+24.7+31.25+38.15+45.9}{61}=\frac{2003}{61}$
• Nhóm chứa mốt của mẫu số liệu ghép nhóm là [27,5; 34,5).
Do đó, $u_{m}=27,5; n_{m-1}= 7; n_{m}= 25; n_{m+1} = 15; u_{m + 1}- u_{m} = 34,5-27,5 = 7$.
Mốt của mẫu số liệu ghép nhóm là:
$M_{o}=27,5+\frac{25-7}{(25-7)+(25-15)}.7=32$.
• Gọi $x_{1}; x_{2}; x_{3};...; x_{61}$ là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có:
$x_{1}, ..., x_{5}\in [13,5; 20,5); x_{6}, ..., x_{12}\in [20,5; 27,5); x_{13}, ..., x_{37}\in [27,5; 34,5)$; $x_{38}, ..., x_{52}\in [34,5; 41,5); x_{53}, ..., x_{61} \in [41,5; 48,5)$.
Tứ phân vị thứ hai của mẫu số liệu $x_{1}; x_{2}; x_{3};...; x_{61}$ là $x_{31}$. Do $x_{31}\in [27,5; 34,5)$ nên tứ phân vị thứ hai của mẫu số liệu ghép nhóm là
$Q_{2}=27,5+\frac{\frac{6}{12}-(5+7)}{25}.(34,5-27,5)=\frac{817}{25}=32,68$
Tứ phân vị thứ nhất của mẫu số liệu $x_{1}; x_{2}; x_{3};...; x_{61}$ là $\frac{1}{2}(x_{15}+x_{16})$. Do $x_{15}$ và $x_{16}$ thuộc nhóm [27,5; 34,5) nên tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là
$Q_{1}=27,5+\frac{\frac{61}{4}-(5+7)}{25}.(34,5-27,5)=\frac{2841}{100}= 28,41$
Tứ phân vị thứ ba của mẫu số liệu $x_{1}; x_{2}; x_{3}; ...; x_{61}$ là $\frac{1}{2}(x_{46}+x_{47})$. Do $x_{46}$ và $x_{47}$ thuộc nhóm [34,5; 41,5) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm là
$Q_{3}=34,5+\frac{\frac{3.61}{4}-(5+7+25)}{15}.(41,5-34,5)=\frac{463}{12}$.
Bài 5: Kết quả điều tra về số giờ làm thêm trong một tuần của 100 sinh viên được cho ở biểu đồ bên.
Hãy ước lượng số trung bình, mốt và các tứ phân vị của số liệu đó.
Trả lời:
Từ mẫu số liệu ghép nhóm, ta có bảng thống kê số giờ làm thêm trong một tuần của 100 sinh viên như sau:
Số giờ làm thêm | [2; 4) | [4; 6) | [6; 8) | [8; 10) | [10; 12) |
Số giờ làm thêm đại diện | 3 | 5 | 7 | 9 | 11 |
Số sinh viên | 12 | 20 | 37 | 21 | 10 |
Cỡ mẫu n = 100.
Số trung bình của mẫu số liệu ghép nhóm trên là
$\bar{x}=\frac{3.12+5.20+7.37+9.21+11.10}{100}= 6,94$.
Nhóm chứa mốt của mẫu số liệu trên là nhóm [6; 8).
Do đó: $u_{m} = 6; n_{m} = 37; n_{m -1} = 20; n_{m + 1} = 21; u_{m + 1} =8$.
Vậy mốt của mẫu số liệu ghép nhóm là
$M_{O}=6+\frac{37-20}{(37-20)+(37-21)}.(8-6)=\frac{232}{33}\approx 7,03$
Gọi $x_{1}; x_{2}; ...; x_{100}$ là mẫu số liệu được xếp theo thứ tự không giảm.
Tứ phân vị thứ hai của mẫu số liệu $x_{1}; x_{2}; ...; x_{100}$ là $\frac{1}{2}(x_{50}+x_{51})$. Do $x_{50}$ và $x_{51}$ thuộc nhóm [6; 8) nên tứ phân vị thứ hai của mẫu số liệu là
$Q_{2}=6+\frac{\frac{100}{2}-(12+20)}{37}.(8-6)=\frac{258}{37} \approx 6,97$
Tứ phân vị thứ nhất của dãy số liệu $x_{1}; x_{2}; ...; x_{100}$ là $\frac{1}{2}(x_{25}+x_{26})$. Do $x_{25}$ và $x_{26}$ thuộc nhóm [4; 6) nên tứ phân vị thứ nhất của mẫu số liệu là
$Q_{1}=4+\frac{\frac{100}{4}-(12+0)}{20}.(6-4)=5,3$.
Tứ phân vị thứ ba của dãy số liệu $x_{1}; x_{2}; ...; x_{100}$ là $\frac{1}{2}(x_{75}+x_{76})$. Do $x_{75}$ và $x_{76}$ thuộc nhóm [8; 10) nên tứ phân vị thứ ba của mẫu số liệu là
$Q_{3}=8+\frac{\frac{3.100}{4}-(12+20+37)}{21}.(10-8)=\frac{60}{7} \approx 8,57$
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
Nội dung quan tâm khác
Thêm kiến thức môn học
Giải bài tập những môn khác
Giải sgk lớp 11 KNTT
Giải sgk lớp 11 CTST
Giải sgk lớp 11 cánh diều
Giải SBT lớp 11 kết nối tri thức
Giải SBT lớp 11 chân trời sáng tạo
Giải SBT lớp 11 cánh diều
Giải chuyên đề học tập lớp 11 kết nối tri thức
Giải chuyên đề toán 11 kết nối tri thức
Giải chuyên đề ngữ văn 11 kết nối tri thức
Giải chuyên đề vật lí 11 kết nối tri thức
Giải chuyên đề hóa học 11 kết nối tri thức
Giải chuyên đề sinh học 11 kết nối tri thức
Giải chuyên đề kinh tế pháp luật 11 kết nối tri thức
Giải chuyên đề lịch sử 11 kết nối tri thức
Giải chuyên đề địa lí 11 kết nối tri thức
Giải chuyên đề mĩ thuật 11 kết nối tri thức
Giải chuyên đề âm nhạc 11 kết nối tri thức
Giải chuyên đề công nghệ chăn nuôi 11 kết nối tri thức
Giải chuyên đề công nghệ cơ khí 11 kết nối tri thức
Giải chuyên đề tin học 11 định hướng Khoa học máy tính kết nối tri thức
Giải chuyên đề tin học 11 định hướng Tin học ứng dụng kết nối tri thức
Giải chuyên đề quốc phòng an ninh 11 kết nối tri thức
Giải chuyên đề hoạt động trải nghiệm hướng nghiệp 11 kết nối tri thức
Giải chuyên đề học tập lớp 11 chân trời sáng tạo
Giải chuyên đề học tập lớp 11 cánh diều
Trắc nghiệm 11 Kết nối tri thức
Trắc nghiệm 11 Chân trời sáng tạo
Trắc nghiệm 11 Cánh diều
Bộ đề thi, đề kiểm tra lớp 11 kết nối tri thức
Đề thi Toán 11 Kết nối tri thức
Đề thi ngữ văn 11 Kết nối tri thức
Đề thi vật lí 11 Kết nối tri thức
Đề thi sinh học 11 Kết nối tri thức
Đề thi hóa học 11 Kết nối tri thức
Đề thi lịch sử 11 Kết nối tri thức
Đề thi địa lí 11 Kết nối tri thức
Đề thi kinh tế pháp luật 11 Kết nối tri thức
Đề thi công nghệ cơ khí 11 Kết nối tri thức
Đề thi công nghệ chăn nuôi 11 Kết nối tri thức
Đề thi tin học ứng dụng 11 Kết nối tri thức
Đề thi khoa học máy tính 11 Kết nối tri thức
Bộ đề thi, đề kiểm tra lớp 11 chân trời sáng tạo
Bộ đề thi, đề kiểm tra lớp 11 cánh diều
Đề thi Toán 11 Cánh diều
Đề thi ngữ văn 11 Cánh diều
Đề thi vật lí 11 Cánh diều
Đề thi sinh học 11 Cánh diều
Đề thi hóa học 11 Cánh diều
Đề thi lịch sử 11 Cánh diều
Đề thi địa lí 11 Cánh diều
Đề thi kinh tế pháp luật 11 Cánh diều
Đề thi công nghệ cơ khí 11 Cánh diều
Đề thi công nghệ chăn nuôi 11 Cánh diều
Đề thi tin học ứng dụng 11 Cánh diều
Đề thi khoa học máy tính 11 Cánh diều
Bình luận