Giải SBT Toán 11 chân trời Bài 2 Hai đường thẳng song song
Giải chi tiết sách bài tập Toán 11 tập 1 Chân trời bài 2 Hai đường thẳng song song. Tech12h sẽ hướng dẫn giải tất cả câu hỏi và bài tập với cách giải nhanh và dễ hiểu nhất. Hi vọng, thông qua đó học sinh được củng cố kiến thức và nắm bài học tốt hơn.
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
Bài 1: Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AD. Gọi I và J lần lượt là trọng tâm của các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD tại P, Q.
a) Chứng minh MN song song với PQ.
b) Gọi E là giao điểm của AM và BP, F là giao điểm của CQ và DN. Chứng minh EF song song với MN và PQ.
Trả lời:
a) ABCD là hình thang nên AD // BC
Ta có: $M \in SB$, mà $SB \subset (SBC)$ nên $M \in (SBC); M \in (ADJ)$
Do đó $M \in (ADJ) \cup (SBC)$.
Tương tự, $N \in (ADJ) \cup (SBC)$.
Suy ra $(ADJ) \cup (SBC) = MN$
Mà $AD // BC; AD \subset (ADJ); BC \subset (SBC)$;
Suy ra MN // AD // BC. (1)
Chứng minh tương tự như trên, ta cũng có PQ // AD // BC. (2)
Từ (1), (2) suy ra MN // PQ.
b) Ta có: $E \in AM$, mà $AM \subset (ADJ)$ nên $E\in (ADJ)$;
$E \in BP$, mà $BP \subset (IBC)$ nên $E \in (IBC)$.
Do đó $E \in (ADJ) \cup (IBC)$.
Tương tự ta cũng có $F \in (ADJ) \cup (IBC)$.
Suy ra $(ADJ) \cup (IBC) = EF$.
Mà $AD // BC, AD \subset (ADJ), BC \subset (IBC)$.
Suy ra EF // AD // BC
Lại có MN // PQ // AD // BC (chứng minh câu a)
Do đó EF // MN // PQ.
Bài 2: Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho $\frac{AM}{AB}=\frac{AN}{AC}$; I; J lần lượt là trung điểm của BD, CD.
a) Chứng minh rằng MN // BC.
b) Tứ giác MNJI là hình gì. Tìm điểu kiện để tứ giác MNJI là hình bình hành.
Trả lời:
a) Xét $\Delta ABC$ có $\frac{AM}{AB}=\frac{AN}{AC}$, suy ra MN // BC (định lý Thalès đảo).
b) Xét $\Delta BCD$ có I, J lần lượt là trung điểm của BD, CD nên IJ là đường trung bình của tam giác DBC, suy ra IJ // BC.
Mà MN // BC (câu a) nên IJ // MN, do đó MNJI là hình thang.
MNJI là hình bình hành khi và chỉ khi MI // NJ // AD
Suy ra MI là đường trung bình của tam giác ADB.
Mà I là trung điểm của BD nên M là trung điểm AB.
Bài 3: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Tìm giao tuyến của các mặt phẳng:
a) (SAD) và (SBC);
b) (SAB) và (MDC), với M là một điểm bất kì thuộc cạnh SA.
Trả lời:
a) Ta có $S \in (SAD)$ và $S \in (SBC)$ nên $S \in (SAD) \cup (SBC)$,
Mặt khác, $AD \subset (SAD), BC \subset (SBC)$ và AD // BC (do ABCD là hình bình hành)
Suy ra $(SAD) \cup (SBC) = d$ với d là đường thẳng đi qua S, d //AD // BC.
b) Ta có $M \in SA$, mà $SA \in (SAB)$ nên $M \in (SAB)$;
Lại có $M \in (MDC)$
Nên $M \in (SAB) \cup (MDC)$.
Ta có $AB \subset (SAB), DC \subset (MDC)$ và AB // DC (do ABCD là hình bình hành).
Suy ra $(SAB) \cup (MDC) = Mx$ với Mx // AB // DC.
Gọi N là giao điểm của SB và Mx.
Khi đó $(SAB) \cup (MDC) = MN$.
Bài 4: Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD.
a) Tìm các giao tuyến: $d_{1} = (SAB) \cup (SCD); d_{2} = (SCD) \cup (MAB)$.
b) Chứng minh $d_{1} // d_{2}$.
Trả lời:
a) $S \in (SAD)$ và $S \in (SBC)$ nên $S \in (SAB) \cup (SDC)$.
Mặt khác có $AB \subset (SAB), CD \subset (SDC)$ và AB // CD (do ABCD là hình thang)
Suy ra $(SAB) \cup (SCD) = d_{1}$ với $d_{1}$ là đường thẳng đi qua S và $d_{1}$ // AB // CD.
Ta có $M \in SD$, mà $SD \in (SCD)$ nên $M \in (SCD)$
Lại có $M \in (MAB)$
Suy ra $(SCD) \cup (MAB) = M$
Mặt khác có $AB \subset (MAB), CD \subset (SCD)$ và AB // CD
Suy ra $(SCD) \cup (MAB) = d_{2}$ với $d_{2}$ là đường thẳng đi qua M và $d_{2}$ // AB // CD.
b) Theo câu a, ta có $d_{1}$ // AB // CD và $d_{2}$ // AB // CD
Suy ra $d_{1} // d_{2}$.
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
Nội dung quan tâm khác
Thêm kiến thức môn học
Giải bài tập những môn khác
Giải sgk lớp 11 KNTT
Giải sgk lớp 11 CTST
Giải sgk lớp 11 cánh diều
Giải SBT lớp 11 kết nối tri thức
Giải SBT lớp 11 chân trời sáng tạo
Giải SBT lớp 11 cánh diều
Giải chuyên đề học tập lớp 11 kết nối tri thức
Giải chuyên đề toán 11 kết nối tri thức
Giải chuyên đề ngữ văn 11 kết nối tri thức
Giải chuyên đề vật lí 11 kết nối tri thức
Giải chuyên đề hóa học 11 kết nối tri thức
Giải chuyên đề sinh học 11 kết nối tri thức
Giải chuyên đề kinh tế pháp luật 11 kết nối tri thức
Giải chuyên đề lịch sử 11 kết nối tri thức
Giải chuyên đề địa lí 11 kết nối tri thức
Giải chuyên đề mĩ thuật 11 kết nối tri thức
Giải chuyên đề âm nhạc 11 kết nối tri thức
Giải chuyên đề công nghệ chăn nuôi 11 kết nối tri thức
Giải chuyên đề công nghệ cơ khí 11 kết nối tri thức
Giải chuyên đề tin học 11 định hướng Khoa học máy tính kết nối tri thức
Giải chuyên đề tin học 11 định hướng Tin học ứng dụng kết nối tri thức
Giải chuyên đề quốc phòng an ninh 11 kết nối tri thức
Giải chuyên đề hoạt động trải nghiệm hướng nghiệp 11 kết nối tri thức
Giải chuyên đề học tập lớp 11 chân trời sáng tạo
Giải chuyên đề học tập lớp 11 cánh diều
Trắc nghiệm 11 Kết nối tri thức
Trắc nghiệm 11 Chân trời sáng tạo
Trắc nghiệm 11 Cánh diều
Bộ đề thi, đề kiểm tra lớp 11 kết nối tri thức
Đề thi Toán 11 Kết nối tri thức
Đề thi ngữ văn 11 Kết nối tri thức
Đề thi vật lí 11 Kết nối tri thức
Đề thi sinh học 11 Kết nối tri thức
Đề thi hóa học 11 Kết nối tri thức
Đề thi lịch sử 11 Kết nối tri thức
Đề thi địa lí 11 Kết nối tri thức
Đề thi kinh tế pháp luật 11 Kết nối tri thức
Đề thi công nghệ cơ khí 11 Kết nối tri thức
Đề thi công nghệ chăn nuôi 11 Kết nối tri thức
Đề thi tin học ứng dụng 11 Kết nối tri thức
Đề thi khoa học máy tính 11 Kết nối tri thức
Bộ đề thi, đề kiểm tra lớp 11 chân trời sáng tạo
Bộ đề thi, đề kiểm tra lớp 11 cánh diều
Đề thi Toán 11 Cánh diều
Đề thi ngữ văn 11 Cánh diều
Đề thi vật lí 11 Cánh diều
Đề thi sinh học 11 Cánh diều
Đề thi hóa học 11 Cánh diều
Đề thi lịch sử 11 Cánh diều
Đề thi địa lí 11 Cánh diều
Đề thi kinh tế pháp luật 11 Cánh diều
Đề thi công nghệ cơ khí 11 Cánh diều
Đề thi công nghệ chăn nuôi 11 Cánh diều
Đề thi tin học ứng dụng 11 Cánh diều
Đề thi khoa học máy tính 11 Cánh diều
Bình luận