Cách giải bài toán dạng: Trường hợp bằng nhau của tam giác vuông Toán lớp 7
Tech12h xin gửi tới các bạn bài học Dạng trường hợp bằng nhau của tam giác vuông Toán lớp 7. Bài học cung cấp cho các bạn phương pháp giải toán và các bài tập vận dụng. Hi vọng nội dung bài học sẽ giúp các bạn hoàn thiện và nâng cao kiến thức để hoàn thành mục tiêu của mình.
A. PHƯƠNG PHÁP GIẢI
- Muốn chứng minh một tam giác là tam giác vuông cân. Ngoài các cách chứng minh đã nêu ở bài học trước. Còn có cách chứng minh thứ ba là chứng minh tam giác đó vuông và có một góc nhọn $45^{\circ}$
- Với tam giác vuông cân bất kì thì ba góc trong tam giác đã biết. Vì vậy muốn chứng minh hai tam giác vuông cân bằng nhau chỉ cần có một cạnh bằng nhau là đủ (có thể là cạnh huyền bằng nhau hoặc một cạnh góc vuông bằng nhau).
- Ta có định lí: Trong một tam giác vuông có góc nhọn $30^{\circ}$ thì cạnh đối diện với góc đó có độ dài bằng $\frac{1}{2}$ độ dài cạnh huyền của tam giác đó.
- Chú ý: Nếu chứng minh hai tam giác bằng nhau mà một trong hai tam giác đó chưa biết là tam giác vuông thì ta vẫn phải áp dụng ba trường hợp bằng nhau của tam giác thường để từ đó suy ra kết quả: Tam giác thứ nhất có góc vuông thì tam giác thứ hai cũng có góc vuông tương ứng.
Ví dụ 1: Cho $\Delta $ABC cân (AB = AC). Từ B kẻ BH $\perp $ AC, CK $\perp $ AB. Chứng minh rằng:
a) BH = CK
b) BH và CK cắt nhau tại O. Tia OA cắt BC tại I. Chứng minh AI $\perp $ BC.
Hướng dẫn:
a) Xét $\Delta $BHC và $\Delta $CKB là 2 tam giác vuông tại H và K có:
- chung cạnh huyền BC
- $\widehat{BCH}=\widehat{CBK}$
$\Rightarrow $ $\Delta $BHC = $\Delta $CKB (cạnh huyền - góc nhọn)
$\Rightarrow $ BH = CK
b) Có: $\Delta $BHC = $\Delta $CKB $\Rightarrow $ BK = HC. Mà AB = AC
$\Rightarrow $ AB - BK = AC - CH Hay AK = AH
Xét $\Delta $AKO và $\Delta $AHO là 2 tam giác vuông tại H và K có:
- chung cạnh huyền OA
- AK = AH
$\Rightarrow $ $\Delta $AKO = $\Delta $AHO (cạnh huyền - cạnh góc vuông)
$\Rightarrow \widehat{A_{1}}=\widehat{A_{2}}$
Xét $\Delta $ABI và $\Delta $ACI có:
- $\widehat{A_{1}}=\widehat{A_{2}}$
- $\widehat{B}=\widehat{C}$
Hai tam giác có 2 góc tương ứng bằng nhau nên góc thứ ba còn lại cũng tương ứng bằng nhau
$\Rightarrow \widehat{AIB}=\widehat{AIC}$
Mà $\widehat{AIB}+\widehat{AIC}=180^{\circ}$
$\Rightarrow \widehat{AIB}=\widehat{AIC}=90^{\circ}$
Do đó AI $\perp $ BC
Bình luận