Đáp án toán 8 kết nối bài 12 Hình bình hành

Đáp án Đáp án toán 8 kết nối bài 12 Hình bình hành. Bài giải được trình bày ngắn gọn, chính xác giúp các em học Toán 8 Kết nối tri thức dễ dàng. Từ đó, hiểu bài và vận dụng vào các bài tập khác. Đáp án chuẩn chỉnh, rõ ý, dễ tiếp thu. Kéo xuống dưới để xem chi tiết


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây

BÀI 12. HÌNH BÌNH HÀNH

I. HÌNH BÌNH HÀNH VÀ TÍNH CHẤT

HĐ1. Trong hình 3.28, có một hình bình hành, đó là hình nào? Em có thể giải thích tại sao không?

BÀI 12. HÌNH BÌNH HÀNH

Đáp án chuẩn:

Hình 3.28 c) là hình bình hành, vì có hai hai cặp cạnh đối song song với nhau

HĐ2. Hãy nêu các tính chất của hình bình hành mà em đã biết

Đáp án chuẩn:

- Các góc đối bằng nhau.

- Các cạnh đối song song và bằng nhau.

- Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

HĐ3. Cho hình bình hành ABCD (H3.30)

  1. Chứng minh BÀI 12. HÌNH BÌNH HÀNH = BÀI 12. HÌNH BÌNH HÀNH

Từ đó suy ra AB = CD; AD = BC; BÀI 12. HÌNH BÌNH HÀNH

  1. Chứng minh BÀI 12. HÌNH BÌNH HÀNH = BÀI 12. HÌNH BÌNH HÀNH 

Từ đó suy ra BÀI 12. HÌNH BÌNH HÀNH

  1. Gọi giao điểm của 2 đường chéo AC, BD là O. Chứng minh BÀI 12. HÌNH BÌNH HÀNH = BÀI 12. HÌNH BÌNH HÀNH

BÀI 12. HÌNH BÌNH HÀNHOA = OC; OB = OD.

BÀI 12. HÌNH BÌNH HÀNH

Đáp án chuẩn:

Ta có ABCD là hình bình hành.

a) BÀI 12. HÌNH BÌNH HÀNH = BÀI 12. HÌNH BÌNH HÀNH (g.c.g)

=> AB = CD; AD = BC; BÀI 12. HÌNH BÌNH HÀNH.

b) BÀI 12. HÌNH BÌNH HÀNH = BÀI 12. HÌNH BÌNH HÀNH (c.g.c).

=> BÀI 12. HÌNH BÌNH HÀNH.

c) BÀI 12. HÌNH BÌNH HÀNH = BÀI 12. HÌNH BÌNH HÀNH (g.c.g) => OA = OC; OB = OD.

LT 1. Cho tam giác ABC. Từ một điểm M tùy ý trên cạnh BC, kẻ đường thẳng song song với AB, cắt cạnh AC tại N và kẻ đường thẳng song song với AC, cắt AB tại P. Gọi I là trung điểm của đoạn NP. Chứng minh rằng I cũng là trung điểm của đoạn thẳng AM.

Đáp án chuẩn:

BÀI 12. HÌNH BÌNH HÀNH

Chứng minh ANMP là hình bình hành

Mà I là trung điểm của PN  => I cũng là trung điểm của AM.

II. DẤU HIỆU NHẬN BIẾT

LT 2. Cho hình bình hành ABCD (AB >BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của góc B cắt CD tại F (H.3.32)

  1. Chứng minh hai tam giác ADE và CBF là những tam giác cân bằng nhau
  2. Tứ giác DEBF là hình gì? Vì sao?

Đáp án chuẩn:

BÀI 12. HÌNH BÌNH HÀNH

a) Chứng minh BÀI 12. HÌNH BÌNH HÀNH

=> BÀI 12. HÌNH BÌNH HÀNH cân tại A.

+) Chứng minh BÀI 12. HÌNH BÌNH HÀNH 

=> BÀI 12. HÌNH BÌNH HÀNH cân tại C.

+) Xét BÀI 12. HÌNH BÌNH HÀNHBÀI 12. HÌNH BÌNH HÀNH có: AD = BC; BÀI 12. HÌNH BÌNH HÀNH 

=> BÀI 12. HÌNH BÌNH HÀNH = BÀI 12. HÌNH BÌNH HÀNH (g.c.g).

=> ED = BF (đpcm)

b) Tứ giác DEBF là hình bình hành vì ED = BF và ED // BF

LT 3. Cho hai điểm A, B phân biệt và điểm O không nằm trên đường thẳng AB. Gọi  A’, B’ là các điểm sao cho 0 là trung điểm của A,A’, BB’. Chứng minh rằng A’B’ = AB; A’B’ // AB.

Đáp án chuẩn:

BÀI 12. HÌNH BÌNH HÀNH

Tứ giác ABA'B' là hình bình hành 

=>A'B' = AB và A'B' // AB 

Vận dụng. Trở lại bài mở đầu. Em hãy vẽ hình và nêu các vẽ con đường cần mở.

Đáp án chuẩn:

 

BÀI 12. HÌNH BÌNH HÀNH

III. GIẢI BÀI TẬP CUỐI SGK

Bài 3.13. Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Vì sao?

  1. Hình thang có hai cạnh bên song song là hình bình hành
  2. Hình thang có hai cạnh bên bằng nhau là hình bình hành
  3. Tứ giác có hai cạnh đối nào cũng song song là hình bình hành

Đáp án chuẩn:

a) Đúng, vì khi đó ta được tứ giác có các cạnh đối song song là hình bình hành 

b) Sai, vì hình thang cân có hai cạnh bên bằng nhau nhưng nó không phải là hình bình hành.

c) Đúng, vì khi đó ta được tứ giác có các cạnh đối song song là hình bình hành 

Bài 3.14. Tính các góc còn lại của hình bình hành ABCD trong hình 3.35

Đáp án chuẩn:

BÀI 12. HÌNH BÌNH HÀNH

BÀI 12. HÌNH BÌNH HÀNH BÀI 12. HÌNH BÌNH HÀNH

Bài 3.15. Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Chứng minh BF = DE

Đáp án chuẩn:

BÀI 12. HÌNH BÌNH HÀNH

Tứ giác DEBF là hình bình hành (EB // DF ; EB = DF).

=>DE = BF (đpcm)

Bài 3.16. Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành, tứ giác nào không là hình bình hành, vì sao?

Đáp án chuẩn:

BÀI 12. HÌNH BÌNH HÀNH

+) Hình 3.36 a là hình bình hành. Vì: BÀI 12. HÌNH BÌNH HÀNHBÀI 12. HÌNH BÌNH HÀNH

+) Hình 3.36 b không phải hình bình hành. Vì :BÀI 12. HÌNH BÌNH HÀNH

+) Hình 3.36 c là hình bình hành. Vì:BÀI 12. HÌNH BÌNH HÀNH; BÀI 12. HÌNH BÌNH HÀNH

Bài 3.17.  Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Chứng minh rằng: 

  1. Hai tứ giác AEFD, AECF là những hình bình hành
  2. EF = AD; AF=EC

Đáp án chuẩn:

BÀI 12. HÌNH BÌNH HÀNH

a) Xét tứ giác AEFD có: AE // DF và AE = DF => AEFD là hình bình hành.

+) Xét tứ giác AECF có: AE // CF và AE = CF => AECF là hình bình hành.

b) AEFD là hình bình hành => EF = AD 

+) AECF là hình bình hành => AF = EC 

Bài 3.18. Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Một đường thẳng đi qua O lần lượt cắt AB, CD của hình bình hành tại hai điểm M,N. Chứng minh BÀI 12. HÌNH BÌNH HÀNH = BÀI 12. HÌNH BÌNH HÀNH. Từ đó suy ra tứ giác MBND là hình bình hành.

Đáp án chuẩn:

BÀI 12. HÌNH BÌNH HÀNH

+) Xét BÀI 12. HÌNH BÌNH HÀNHBÀI 12. HÌNH BÌNH HÀNH có: OA = OC; BÀI 12. HÌNH BÌNH HÀNH; BÀI 12. HÌNH BÌNH HÀNH

BÀI 12. HÌNH BÌNH HÀNH=> BÀI 12. HÌNH BÌNH HÀNH = BÀI 12. HÌNH BÌNH HÀNH 

+) Ta có: BM // DN và BM = DN => tứ giác MBND là hình bình hành


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây

Nội dung quan tâm khác

Thêm kiến thức môn học

Bình luận

Giải bài tập những môn khác