Lời giải Bài 1 Đề thi thử trường THPT chuyên Đà Nẵng


Lời giải bài 1:

Đề ra : 

Cho biểu thức :  $T=\frac{3x+\sqrt{16x}-7}{x+2\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{\sqrt{x}-3}{\sqrt{x}-1}$  ( Với x > 0)

a. Rút gọn biểu thức T .

b. Tính giá trị của biểu thức T khi  $x=2\sqrt{2}+3$ .

Lời giải chi tiết :

a.    $T=\frac{3x+\sqrt{16x}-7}{x+2\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{\sqrt{x}-3}{\sqrt{x}-1}$

<=>  $T=\frac{3x+4\sqrt{x}-7}{(\sqrt{x}+3)(\sqrt{x}-1)}-\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{\sqrt{x}-3}{\sqrt{x}-1}$

<=>  $T=\frac{3x+4\sqrt{x}-7-(\sqrt{x}+1)(\sqrt{x}-1)-(\sqrt{x}-3)(\sqrt{x}+3)}{(\sqrt{x}+3)(\sqrt{x}-1)}$

<=>  $T=\frac{3x+4\sqrt{x}-7-x+1-x+9}{(\sqrt{x}+3)(\sqrt{x}-1)}$

<=>  $T=\frac{x+4\sqrt{x}+3}{(\sqrt{x}+3)(\sqrt{x}-1)}$

<=>  $T=\frac{(\sqrt{x}+3)(\sqrt{x}+1)}{(\sqrt{x}+3)(\sqrt{x}-1)}$

<=>  $T=\frac{\sqrt{x}+1}{\sqrt{x}-1}$

Vậy $T=\frac{\sqrt{x}+1}{\sqrt{x}-1}$ .

b.  Ta có :  $x=2\sqrt{2}+3=(\sqrt{2}+1)^{2}=> \sqrt{x}=\sqrt{2}+1$ 

Khi đó thay vào T ta được :   $T=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2}+1+1}{\sqrt{2}-1+1}$ 

                                     <=>    $T=\frac{\sqrt{2}+2}{\sqrt{2}}=1+\sqrt{2}$ .

Vậy khi $x=2\sqrt{2}+3$  => $T=1+\sqrt{2}$ .


Bình luận

Giải bài tập những môn khác