Giải Bài tập 5.21 trang 123 sgk Toán 11 tập 1 Kết nối

Bài tập 5.21 trang 123 sgk Toán 11 tập 1 KNTT: Cho hàm số $f(x)=\sqrt{x+1}-\sqrt{x+2}$. Mệnh đề đúng là:

A. $\underset{x\rightarrow +\infty }{lim}f(x)=-\infty $

B. $\underset{x\rightarrow +\infty }{lim}f(x)=0$

C. $\underset{x\rightarrow +\infty }{lim}f(x)=-1$

D. $\underset{x\rightarrow +\infty }{lim}f(x)=-\frac{1}{2}$


Ta có: $f(x)=\sqrt{x+1}-\sqrt{x+2}=\frac{(\sqrt{x+1})^{2}-(\sqrt{x+2})^{2}}{\sqrt{x+1}+\sqrt{x+2}}$

$=\frac{(x+1)-(x+2)}{\sqrt{x+1}+\sqrt{x+2}}=\frac{-1}{\sqrt{x+1}+\sqrt{x+2}}$

Do đó $\underset{x\rightarrow +\infty }{lim}f(x)=\underset{x\rightarrow +\infty }{lim}\frac{-1}{\sqrt{x+1}+\sqrt{x+2}}=0$

Đáp án: B


Trắc nghiệm Toán 11 Kết nối Bài tập cuối chương V

Bình luận

Giải bài tập những môn khác