Dễ hiểu giải Toán 12 Cánh diều bài 1: Nguyên hàm
Giải dễ hiểu bài 1: Nguyên hàm. Trình bày rất dễ hiểu, nên tiếp thu Toán 12 Cánh diều dễ dàng. Học sinh nắm được kiến thức và biết suy rộng ra các bài tương tự. Thêm 1 dạng giải mới để mở rộng tư duy. Danh mục các bài giải trình bày phía dưới
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
NGUYÊN HÀM
I. KHÁI NIỆM NGUYÊN HÀM
Hoạt động 1 trang 3 sgk toán 12 tập 2 cd
Cho hàm số , Tính F’(x).
Giải nhanh:
Luyện tập – vận dụng 1 trang 4 sgk toán 12 tập 2 cd
Hàm số là nguyên hàm của hàm số nào?
Giải nhanh:
Hoạt động 2 trang 4 sgk toán 12 tập 2 cd
Cho hàm số . Cho hàm số .
a) Cả 2 hàm số F(x) và G(x) có phải là nguyên hàm của hàm số trên R hay không?
b) Hiệu F(x)-G(x) có phải là một hằng số C không phụ thuộc vào x hay không?
Giải nhanh:
a) Cả 2 hàm số F(x) và G(x) là nguyên hàm của hàm số .
b) là một hằng số không phụ thuộc vào x
Luyện tập – vận dụng 2 trang 4 sgk toán 12 tập 2 cd
Tìm tất cả nguyên hàm của hàm số trên R
Giải nhanh:
với vì với mọi C và x
Luyện tập – vận dụng 3 trang 5 sgk toán 12 tập 2 cd
Chứng tỏ rằng:
Giải nhanh:
Do nên là nguyên hàm của hàm số trên .
II. TÍNH CHẤT CỦA NGUYÊN HÀM
Hoạt động 3 trang 5 sgk toán 12 tập 2 cd
Cho f(x) là hàm số liên tục trên K, k là hằng số thực khác 0.
a.Giả sử là một nguyên hàm của hàm số trên K. Hỏi có phải nguyên hàm của hàm số trên K hay không?
b. Giả sử G(x) là một nguyên hàm của hàm số kf(x) trên K. Đặt G(x) = kH(x) trên K. Hỏi H(x) có phải là nguyên hàm của hàm số f(x) trên K hay không?
c) Nêu nhận xét về và
Giải nhanh:
a) F(x) là một nguyên hàm của hàm số trên K.
b) H(x) là nguyên hàm của hàm số f(x) trên K.
c) . Vì
Luyện tập – vận dụng 4 trang 6 sgk toán 12 tập 2 cd
Chứng tỏ rằng: với n là số nguyên dương.
Giải nhanh:
Do nên là một nguyên hàm của hàm số .
Hoạt động 4 trang 6 sgk toán 12 tập 2 cd
Cho f(x), g(x) là hai hàm số liên tục trên K.
a.Giả sử F(x), G(x) lần lượt là nguyên hàm của các hàm số f(x), g(x) trên K. Hỏi
F(x) + G(x) có phải là nguyên hàm của hàm số f(x) + g(x) trên K hay không?
b.Giả sử H(x), F(x) lần lượt là nguyên hàm của các hàm số f(x) + g(x), f(x) trên K. Đặt G(x) = H(x) -F(x) trên K. Hỏi G(x) có phải là nguyên hàm của hàm số g(x) trên K hay không?
c)Nêu nhận xét về và
Giải nhanh:
a) Ta có . Vậy F(x) + G(x) là nguyên hàm của hàm số f(x) + g(x) trên K.
b)
=> G(x) là nguyên hàm của hàm số g(x) trên K.
c) Đặt , và
Ta có:
=>
Luyện tập – vận dụng 5 trang 7 sgk toán 12 tập 2 cd
Tìm
Giải nhanh:
GIẢI BÀI TẬP CUỐI SÁCH GIÁO KHOA
Bài tập 1 trang 7 toán 12 tập 2 cd
Hàm số là nguyên hàm của hàm số:
A)
B)
C)
D.
Giải nhanh:
B)
Bài tập 2 trang 7 toán 12 tập 2 cd
Tìm nguyên hàm của hàm số sau:
a)
b)
c)
Giải nhanh:
a)
b)
c)
Bài tập 3 trang 7 toán 12 tập 2 cd
Tìm nguyên hàm F(x) của hàm số , biết F(-1) = -5
Giải nhanh:
Ta có:
Mà F(-1) = -5
=>
Vậy C = -10
Vậy nguyên hàm F(x) của hàm số đã cho là
Bài tập 4 trang 8 toán 12 tập 2 cd
Một vườn ươm cây cảnh bán một cây sau 6 năm trồng uốn và tạo dáng. Tốc độ tăng trưởng trong suốt 6 năm được tính xấp xỉ bởi công thức , trong đó h(t) (cm) là chiều cao của cây khi kết thúc t (năm) (Nguồn R.Larson and B. Edwards, Calculus 10e Cengage 2014). Biết rằng cây con khi được trồng cao 12cm.
a) Viết công thức tính chiều cao của cây sau t năm
b) Khi được bán, cây cao bao nhiêu cm
Giải nhanh:
a) Để tìm chiều cao của cây sau t năm, ta cần nguyên hàm hàm số h’(t) để tìm hàm h(t):
Mà khi được trồng, cây con cao 12cm, tức là khi t = 0, h(0) = 12cm
Vì vậy C = 12. Vậy công thức tính chiều cao của cây sau t năm là:
b) Cây được bán sau 6 năm, do đó t =6. Chiều cao của cây khi được bán là:
Vậy khi được bán, cây cao 69cm.
Bài tập 5 trang 8 toán 12 tập 2 cd
Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số:
Trong đó t tính bằng giờ ( 0 ≤ t ≤ 15), B’(t) tính bằng khách/giờ.
( Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-I, Cornelsen 2016)
Biết rằng sau một giờ, 500 người đã có mặt tại lễ hội.
a) Viết công thức của hàm số B(t) biểu diễn số lượng khách tham dự lễ hội với 0 ≤ t ≤ 15.
b) Sau 3 giờ sẽ có bao nhiêu khách tới tham dự lễ hội?
c) Số lượng khách tham dự lễ hội lớn nhất là bao nhiêu?
d) Tại thời điểm nào thì tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất?
Giải nhanh:
a) Để tìm được công thức biểu diễn số lượng khách tham dự lễ hội, ta cần nguyên hàm hàm số B’(t):
Mà sau một giờ, có 500 người đã có mặt tại lễ hội, tức B(1) bằng 500. Ta có:
=> C = 95
Công thức biểu diễn số lượng khách tham dự lễ hội là:
b) Số lượng khách tham gia sau 3 giờ là:
Vậy sau 3 giờ, có 2300 khách tham dự lễ hội.
c) Để tính số lượng khách lớn nhất tham dự lễ hội, ta cần tìm giá trị lớn nhất của B(t) trong khoảng 0 ≤ t ≤ 15. Trước tiên ta tìm các điểm cực trị của hàm số B(t) bằng cách giải phương trình đạo hàm B’(t) =0:
Giải phương trình bậc hai => t =10 hoặc t = 5.
Do đó, hàm số B(t) có các điểm cực trị là t = 0,5,10. Tính B(t) tại các điểm cực trị và tại điểm t lớn nhất =15:
Vậy số lượng khách tham dự lễ hội lớn nhất là 28220 người, tại t =15.
d) Để tính tốc độ thay đổi lượng khách lớn nhất, ta cần tính giá trị t mà tại đó hàm B’(t) đạt giá trị cực đại. Ta có:
bằng 0 khi hoặc
Thay 2 giá trị t vào biểu thức , ta nhận thấy với giá trị , biểu thức . Từ đó suy ra là cực đại.Vậy tốc độ thay đổi lượng khách lớn nhất tương ứng với :
Vậy tốc độ thay đổi khách lớn nhất của lễ hội là 962 người/giờ
Bài tập 6 trang 8 toán 12 tập 2 cd
Đối với các dự án xây dựng, chi phí nhân công lao động được tính theo số ngày công. Gọi m(t) là số lượng công nhân được sử dụng ở ngày thứ t (kể từ khi khởi công dự án). Gọi M(t) là số ngày công được tính hết đến ngày thứ t (kể từ khi khởi công dự án). Trong kinh tế xây dựng, người ta đã biết rằng M’(t) =m(t).
Một công trình xây dựng được dự kiến hoàn thành trong 400 ngày. Số lượng công nhân được sử dụng cho bởi hàm số
Trong đó t tính theo ngày (0 ≤ t ≤ 400) m(t) tính theo người.
(Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-I, Cornelsen 2016)
Đơn giá cho một ngày công lao động là 400.000 đồng.
Tính chi phí nhân công lao động của công trình đó (cho đến lúc hoàn thành).
Giải nhanh:
Để tính được chi phí nhân công lao động của công trình, ta cần biết số ngày thi công dự án. Theo đề bài, số ngày công được xác định bằng cách lấy nguyên hàm của hàm m(t):
Mà tại t =0, số ngày công là 0, tức là M(0)=0.
Thay t=0, ta có:
=> C = 0
=>
Công trình được dự kiến hoàn thành trong 400 ngày, do đó ta cần tính M(400):
Một ngày công lao động có đơn giá là 400.000 đồng. Tổng chi phí nhân công là:
đồng
Vậy, chi phí nhân công lao động của công trình đó cho đến lúc hoàn thành là 64 tỷ đồng.
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
Nội dung quan tâm khác
Thêm kiến thức môn học
Giải bài tập những môn khác
Môn học lớp 12 KNTT
5 phút giải toán 12 KNTT
5 phút soạn bài văn 12 KNTT
Văn mẫu 12 KNTT
5 phút giải vật lí 12 KNTT
5 phút giải hoá học 12 KNTT
5 phút giải sinh học 12 KNTT
5 phút giải KTPL 12 KNTT
5 phút giải lịch sử 12 KNTT
5 phút giải địa lí 12 KNTT
5 phút giải CN lâm nghiệp 12 KNTT
5 phút giải CN điện - điện tử 12 KNTT
5 phút giải THUD12 KNTT
5 phút giải KHMT12 KNTT
5 phút giải HĐTN 12 KNTT
5 phút giải ANQP 12 KNTT
Môn học lớp 12 CTST
5 phút giải toán 12 CTST
5 phút soạn bài văn 12 CTST
Văn mẫu 12 CTST
5 phút giải vật lí 12 CTST
5 phút giải hoá học 12 CTST
5 phút giải sinh học 12 CTST
5 phút giải KTPL 12 CTST
5 phút giải lịch sử 12 CTST
5 phút giải địa lí 12 CTST
5 phút giải THUD 12 CTST
5 phút giải KHMT 12 CTST
5 phút giải HĐTN 12 bản 1 CTST
5 phút giải HĐTN 12 bản 2 CTST
Môn học lớp 12 cánh diều
5 phút giải toán 12 CD
5 phút soạn bài văn 12 CD
Văn mẫu 12 CD
5 phút giải vật lí 12 CD
5 phút giải hoá học 12 CD
5 phút giải sinh học 12 CD
5 phút giải KTPL 12 CD
5 phút giải lịch sử 12 CD
5 phút giải địa lí 12 CD
5 phút giải CN lâm nghiệp 12 CD
5 phút giải CN điện - điện tử 12 CD
5 phút giải THUD 12 CD
5 phút giải KHMT 12 CD
5 phút giải HĐTN 12 CD
5 phút giải ANQP 12 CD
Giải chuyên đề học tập lớp 12 kết nối tri thức
Giải chuyên đề Ngữ văn 12 Kết nối tri thức
Giải chuyên đề Toán 12 Kết nối tri thức
Giải chuyên đề Vật lí 12 Kết nối tri thức
Giải chuyên đề Hóa học 12 Kết nối tri thức
Giải chuyên đề Sinh học 12 Kết nối tri thức
Giải chuyên đề Kinh tế pháp luật 12 Kết nối tri thức
Giải chuyên đề Lịch sử 12 Kết nối tri thức
Giải chuyên đề Địa lí 12 Kết nối tri thức
Giải chuyên đề Tin học ứng dụng 12 Kết nối tri thức
Giải chuyên đề Khoa học máy tính 12 Kết nối tri thức
Giải chuyên đề Công nghệ 12 Điện - điện tử Kết nối tri thức
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Kết nối tri thức
Giải chuyên đề học tập lớp 12 chân trời sáng tạo
Giải chuyên đề Ngữ văn 12 Chân trời sáng tạo
Giải chuyên đề Toán 12 Chân trời sáng tạo
Giải chuyên đề Vật lí 12 Chân trời sáng tạo
Giải chuyên đề Hóa học 12 Chân trời sáng tạo
Giải chuyên đề Sinh học 12 Chân trời sáng tạo
Giải chuyên đề Kinh tế pháp luật 12 Chân trời sáng tạo
Giải chuyên đề Lịch sử 12 Chân trời sáng tạo
Giải chuyên đề Địa lí 12 Chân trời sáng tạo
Giải chuyên đề Tin học ứng dụng 12 Chân trời sáng tạo
Giải chuyên đề Khoa học máy tính 12 Chân trời sáng tạo
Giải chuyên đề Công nghệ 12 Điện - điện tử Chân trời sáng tạo
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Chân trời sáng tạo
Giải chuyên đề học tập lớp 12 cánh diều
Giải chuyên đề Ngữ văn 12 Cánh diều
Giải chuyên đề Toán 12 Cánh diều
Giải chuyên đề Vật lí 12 Cánh diều
Giải chuyên đề Hóa học 12 Cánh diều
Giải chuyên đề Sinh học 12 Cánh diều
Giải chuyên đề Kinh tế pháp luật 12 Cánh diều
Giải chuyên đề Lịch sử 12 Cánh diều
Giải chuyên đề Địa lí 12 Cánh diều
Giải chuyên đề Tin học ứng dụng 12 Cánh diều
Giải chuyên đề Khoa học máy tính 12 Cánh diều
Giải chuyên đề Công nghệ 12 Điện - điện tử Cánh diều
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Cánh diều
Bình luận