Giải SBT Toán 11 cánh diều bài 1 Dãy số
Giải chi tiết sách bài tập Toán 11 tập 1 Cánh diều bài 1 Dãy số. Tech12h sẽ hướng dẫn giải tất cả câu hỏi và bài tập với cách giải nhanh và dễ hiểu nhất. Hi vọng, thông qua đó học sinh được củng cố kiến thức và nắm bài học tốt hơn.
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
Bài 1 trang 45 SBT Toán 11 Tập 1: Cho dãy số (un) biết u1 = 2 và un= $\frac{u_{n-1}+1}{2}$ với mọi n ≥ 2. Ba số hạng đầu tiên của dãy số lần lượt là:
A. 2; 1;$ \frac{3}{2}$
B. 2;$ \frac{3}{2}$;$\frac{5}{2}$
C. 2;$ \frac{3}{2}$;$\frac{5}{4}$
D. 2;$ \frac{3}{2}$; 2.
Lời giải:
Đáp án đúng là: C
Ta có: u1 =2; u2=$\frac{u_{1}+1}{2}$=$\frac{3}{2}$; u3=$\frac{u_{2}+1}{2}$=$\frac{3}{2}$
Bài 2 trang 45 SBT Toán 11 Tập 1: Cho dãy số (un) biết un=$\frac{2n^{2}-1}{n^{2}+2}$. Số hạng u10 là:
A. $\frac{19}{12}$
B. $\frac{33}{34}$
C. $\frac{199}{102}$
D. $\frac{3}{4}$
Lời giải:
Đáp án đúng là: C
Ta có u10=$\frac{2.10^{2}-1}{10^{2}+2}$=$\frac{199}{102}$
Bài 3 trang 45 SBT Toán 11 Tập 1: Cho dãy số (un) biết un=$\frac{n+1}{3n-2}$. Với uk=$\frac{8}{19}$ là số hạng của dãy số thì k bằng:
A. 8.
B. 7.
C. 9.
D. 6.
Lời giải:
Đáp án đúng là: B
Giả sử uk=$\frac{8}{19}$ là một số hạng của dãy số (un).
Khi đó k ∈ ℕ* và uk=$\frac{k+1}{3k-2}$ = $\frac{8}{19}$, suy ra 19(k + 1) = 8(3k – 2)
⇔ 19k + 19 = 24k – 16
⇔ 24k – 19k = 19 + 16
⇔ 5k = 35
⇔ k = 7 (t/m).
Vậy k = 7.
Bài 4 trang 45 SBT Toán 11 Tập 1: Cho dãy số (un) biết un = 3n. Số hạng un+1 bằng:
A. 3n . 3.
B. 3n + 3.
C. 3n + 1.
D. 3(n + 1).
Lời giải:
Đáp án đúng là: A
Ta có un+1 = 3n + 1 = 3n . 31 = 3n . 3.
Bài 5 trang 45 SBT Toán 11 Tập 1: Trong các dãy số (un) được xác định như sau, dãy số giảm là:
A. un=$\frac{3n-1}{n+1}$
B. un = n3.
C. un=$\frac{1}{3^{n+1}}$
D. un=$\sqrt{n}$
Lời giải:
Đáp án đúng là: C
Xét đáp án C, ta có:
un+1−un=$\frac{1}{3^{n+1+1}}-\frac{1}{3^{n+1}}=\frac{1}{3^{n+2}}-\frac{1}{3^{n+1}}=\frac{3^{n+1}-3^{n+2}}{3^{n+1}.3^{n+2}}=\frac{3.3^{n}-9.3^{n}}{3^{n+1}.3^{n+2}}=\frac{-6.3^{n}}{3^{n+1}.3^{n+2}}<0$ với mọi n ∈ ℕ*.
Suy ra un + 1 – un < 0, tức là un + 1 < un.
Vậy dãy số (un) với un=$\frac{1}{3^{n+1}}$ là dãy số giảm.
Bài 6 trang 45 SBT Toán 11 Tập 1: Cho dãy số (un) biết un = cos n. Dãy số (un) là:
A. Dãy số tăng.
B. Dãy số giảm.
C. Dãy số bị chặn.
D. Dãy số bị chặn dưới, không bị chặn trên.
Lời giải:
Đáp án đúng là: C
Ta có – 1 ≤ cos n ≤ 1 với mọi n ∈ ℕ*.
Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.
Khi đó dãy số (un) bị chặn trên bởi 1 và bị chặn dưới bởi – 1.
Vậy dãy số (un) là dãy số bị chặn.
Bài 7 trang 46 SBT Toán 11 Tập 1: Tính tổng 6 số hạng đầu của dãy số (un), biết un = 3n – 1.
Lời giải:
Ta có u1 = 3 . 1 – 1 = 2; u2 = 3 . 2 – 1 = 5;
u3 = 3 . 3 – 1 = 8; u4 = 3. 4 – 1 = 11;
u5 = 3 . 5 – 1 = 14; u6 = 3 . 6 – 1 = 17.
Do đó, u1 + u2 + u3 + u4 + u5 + u6 = 2 + 5 + 8 + 11 + 14 + 17 = 57.
Vậy tổng 6 số hạng đầu của dãy số (un) là 57.
Bài 8 trang 46 SBT Toán 11 Tập 1: Cho dãy số (un) biết u1 = 2 và un=$\sqrt{2+u_{n-1}^{2}}$. Viết năm số hạng đầu của dãy số và dự đoán công thức của số hạng tổng quát un.
Lời giải:
Năm số hạng đầu của dãy số (un) là: u1 = 2;
u2=$\sqrt{2+u_{1}^{2}}=\sqrt{2+2^{2}}=\sqrt{6}$
u3=$\sqrt{2+u_{2}^{2}}=\sqrt{2+\sqrt{6}^{2}}=\sqrt{8}=2\sqrt{2}$
u4=$\sqrt{2+u_{3}^{2}}=\sqrt{2+2\sqrt{2}^{2}}=\sqrt{10}$
u5=$\sqrt{2+u_{4}^{2}}=\sqrt{2+\sqrt{10}^{2}}=\sqrt{12}=2\sqrt{3}$
Ta thấy 2=$\sqrt{2.(1+1)};\sqrt{6}=\sqrt{2.(2+1)};\sqrt{8}=\sqrt{2.(3+1)};\sqrt{10}=\sqrt{2.(4+1)};\sqrt{12}=\sqrt{2.(5+1)}$
Khi đó dự đoán công thức số hạng tổng quát của dãy số (un) là un=$\sqrt{2.(n+1)}$
với mọi n ≥ 2.
Bài 9 trang 46 SBT Toán 11 Tập 1: Trong mặt phẳng toạ độ Oxy, cho hàm số y=$ \frac{2x-1}{2x^{2}+1}$ có đồ thị (C). Với mỗi số nguyên dương n, gọi An là giao điểm của đồ thị (C) với đường thẳng x = n. Xét dãy số (un), biết un là tung độ của điểm An. Hãy tìm công thức của số hạng tổng quát un.
Lời giải:
Với x = n, ta có yn=$ \frac{2n-1}{2n^{2}+1}$, suy ra An(n;$ \frac{2n-1}{2n^{2}+1}$)
Vì dãy số (un) có un là tung độ của điểm An, do đó un=$ \frac{2n-1}{2n^{2}+1}$
Vậy công thức của số hạng tổng quát là un=$ \frac{2n-1}{2n^{2}+1}$
Bài 10 trang 46 SBT Toán 11 Tập 1: Cho dãy số (un), biết
a) Viết bốn số hạng đầu của dãy số.
b) Chứng minh rằng un + 4 = un với mọi n ≥ 1.
c) Tính tổng 12 số hạng đầu của dãy số.
Lời giải:
a) Bốn số hạng đầu của dãy số (un) là:
Vậy un + 4 = un với mọi n ≥ 1.
c) Theo câu b) ta có un + 4 = un với mọi n ≥ 1.
Do đó, u1 = u5 = u9, u2 = u6 = u10, u3 = u7 = u11, u4 = u8 = u12.
Tổng 12 số hạng đầu của dãy số là:
u1 + u2 + u3 + u4 + ... + u12 = 3(u1 + u2 + u3 + u4)
= 3$ (\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}+\frac{-\sqrt{2}}{2}+\frac{-\sqrt{2}}{2})$
Bài 11 trang 46 SBT Toán 11 Tập 1: Xét tính tăng, giảm của mỗi dãy số (un), biết:
a) un = 2n + 3;
b) un = 3n – n;
c) un=$ \frac{\sqrt{n}}{2^{n}}$
d) un = sin n.
Lời giải:
a) Ta có un + 1 = 2(n + 1) + 3 = 2n + 5.
Xét un + 1 – un = (2n + 5) – (2n + 3) = 2 > 0 với mọi n ∈ ℕ*.
Do đó, un + 1 > un với mọi n ∈ ℕ*.
Vậy dãy số (un) với un = 2n + 3 là dãy số tăng.
b) Ta có un + 1 = 3n + 1 – (n + 1) = 3 . 3n – n – 1.
Xét un + 1 – un = (3 . 3n – n – 1) – (3n – n) = 3 . 3n – 3n – 1 = 2 . 3n – 1 > 0 với mọi n ∈ ℕ*.
Do đó, un + 1 > un với mọi n ∈ ℕ*.
Vậy dãy số (un) với un = 3n – n là dãy số tăng.
c) Ta có un + 1 = $ \frac{\sqrt{n+1}}{2^{n+1}}=\frac{\sqrt{n+1}}{2.2^{n}}$
Xét un+1−un=$ \frac{\sqrt{n+1}}{2.2^{n}}- \frac{\sqrt{n}}{2^{n}}= 2.2^{n}(\sqrt{n+1}+\sqrt{4n})$<0 với mọi n ∈ ℕ*.
(do – 3n + 1 < 0, 2n > 0 và với mọi n ∈ ℕ*).
Do vậy, un + 1 < un với mọi n ∈ ℕ*.
Vậy dãy số (un) với un là dãy số giảm.
d) Xét hiệu:
H=un+1−un=sin(n+1)−sinn=$2cos\frac{n+1+n}{2}sin\frac{n+1-n}{2}=2cos\frac{2n+1}{2}sin\frac{1}{2}$
Với ∀n∈N ta không thể xác định dấu của $cos\frac{2n+1}{2}$, tức là ta không thể kết luận H>0 hay H<0
Bài 12 trang 46 SBT Toán 11 Tập 1: Cho dãy số (un) biết un=$\frac{an+2}{n+1}$ với a là số thực. Tìm a để dãy số (un) là dãy số tăng.
Lời giải:
Ta có un+1=$\frac{a(n+1)+2}{n+1+1}=\frac{an+a+2}{n+2}$
Xét un+1−un=$\frac{an+a+2}{n+2}-\frac{an+2}{n+1}=\frac{(an+a+2)(n+1)-(an+2)(n+2)}{(n+2)(n+1)}=\frac{an^{2}+an+an+a+2n+2-an^{2}-2an-2n-4}{(n+2)(n+1)}=\frac{a-2}{(n+2)(n+1)}$
Để dãy số (un) là dãy số tăng thì un + 1 > un với mọi n ∈ ℕ* hay un + 1 – un > 0 với mọi n ∈ ℕ*, tức là $\frac{a-2}{(n+2)(n+1)}$>0với mọi n ∈ ℕ*.
Mà n + 2 > 0, n + 1 > 0 với mọi n ∈ ℕ*.
Nên $\frac{a-2}{(n+2)(n+1)}$ >0⇔ a – 2 > 0 ⇔ a > 2.
Vậy (un) là dãy số tăng khi a > 2.
Bài 13 trang 46 SBT Toán 11 Tập 1: Chứng minh rằng:
a) Dãy số (un) với un=$\sqrt{n^{2}+1}$ bị chặn dưới;
b) Dãy số (un) với un = – n2 – n bị chặn trên;
c) Dãy số (un) với un=$\frac{2n+1}{n+2}$ bị chặn.
Lời giải:
a) Ta có n2 ≥ 1 với mọi n ∈ ℕ*.
Do đó, $\sqrt{n^{2}+1}\geq \sqrt{1+1}=\sqrt{2}$ với mọi n ∈ ℕ*.
Vậy dãy số (un) với un bị chặn dưới.
b) Ta có – n2 – n ≤ – 2 với mọi n ∈ ℕ*.
Do đó, dãy số (un) với un = – n2 – n bị chặn trên.
c) Ta có $\frac{2n+1}{n+2}$>0 với mọi n ∈ ℕ*. Do đó, dãy số (un) với un=$\frac{2n+1}{n+2}$ bị chặn dưới. (1)
Lại có $\frac{2n+1}{n+2}$=$\frac{2(n+2)-3}{n+2}=2-\frac{3}{n+2}$<2 với mọi n ∈ ℕ*.
Do đó, dãy số (un) với un=$\frac{2n+1}{n+2}$ bị chặn trên. (2)
Từ (1) và (2), suy ra dãy số (un) với un=$\frac{2n+1}{n+2}$ bị chặn.
Bài 14 trang 46 SBT Toán 11 Tập 1: Với mỗi số nguyên dương n, lấy n + 6 điểm cách đều nhau trên đường tròn. Nối mỗi điểm với điểm cách nó hai điểm trên đường tròn đó để tạo thành các ngôi sao như Hình 1. Gọi un là số đo góc ở đỉnh tính theo đơn vị độ của mỗi ngôi sao thì ta được dãy số (un). Tìm công thức của số hạng tổng quát un.
Lời giải:
Ta thấy đường tròn được chia thành n + 6 cung bằng nhau và mỗi cung có số đo bằng $(\frac{360}{n+6})^{\circ}$. Do mỗi điểm được nối với điểm cách nó hai điểm trên đường tròn nên góc ở đỉnh của mỗi ngôi sao là góc nội tiếp chắn n + 6 – 2 . 3 = n cung bằng nhau đó. Suy ra số đo góc ở đỉnh tính theo đơn vị độ của mỗi ngôi sao là un=$\frac{1}{2}.\frac{360}{n+6}.n=\frac{180n}{n+6}$
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
Nội dung quan tâm khác
Thêm kiến thức môn học
Giải bài tập những môn khác
Giải sgk lớp 11 KNTT
Giải sgk lớp 11 CTST
Giải sgk lớp 11 cánh diều
Giải SBT lớp 11 kết nối tri thức
Giải SBT lớp 11 chân trời sáng tạo
Giải SBT lớp 11 cánh diều
Giải chuyên đề học tập lớp 11 kết nối tri thức
Giải chuyên đề toán 11 kết nối tri thức
Giải chuyên đề ngữ văn 11 kết nối tri thức
Giải chuyên đề vật lí 11 kết nối tri thức
Giải chuyên đề hóa học 11 kết nối tri thức
Giải chuyên đề sinh học 11 kết nối tri thức
Giải chuyên đề kinh tế pháp luật 11 kết nối tri thức
Giải chuyên đề lịch sử 11 kết nối tri thức
Giải chuyên đề địa lí 11 kết nối tri thức
Giải chuyên đề mĩ thuật 11 kết nối tri thức
Giải chuyên đề âm nhạc 11 kết nối tri thức
Giải chuyên đề công nghệ chăn nuôi 11 kết nối tri thức
Giải chuyên đề công nghệ cơ khí 11 kết nối tri thức
Giải chuyên đề tin học 11 định hướng Khoa học máy tính kết nối tri thức
Giải chuyên đề tin học 11 định hướng Tin học ứng dụng kết nối tri thức
Giải chuyên đề quốc phòng an ninh 11 kết nối tri thức
Giải chuyên đề hoạt động trải nghiệm hướng nghiệp 11 kết nối tri thức
Giải chuyên đề học tập lớp 11 chân trời sáng tạo
Giải chuyên đề học tập lớp 11 cánh diều
Trắc nghiệm 11 Kết nối tri thức
Trắc nghiệm 11 Chân trời sáng tạo
Trắc nghiệm 11 Cánh diều
Bộ đề thi, đề kiểm tra lớp 11 kết nối tri thức
Đề thi Toán 11 Kết nối tri thức
Đề thi ngữ văn 11 Kết nối tri thức
Đề thi vật lí 11 Kết nối tri thức
Đề thi sinh học 11 Kết nối tri thức
Đề thi hóa học 11 Kết nối tri thức
Đề thi lịch sử 11 Kết nối tri thức
Đề thi địa lí 11 Kết nối tri thức
Đề thi kinh tế pháp luật 11 Kết nối tri thức
Đề thi công nghệ cơ khí 11 Kết nối tri thức
Đề thi công nghệ chăn nuôi 11 Kết nối tri thức
Đề thi tin học ứng dụng 11 Kết nối tri thức
Đề thi khoa học máy tính 11 Kết nối tri thức
Bộ đề thi, đề kiểm tra lớp 11 chân trời sáng tạo
Bộ đề thi, đề kiểm tra lớp 11 cánh diều
Đề thi Toán 11 Cánh diều
Đề thi ngữ văn 11 Cánh diều
Đề thi vật lí 11 Cánh diều
Đề thi sinh học 11 Cánh diều
Đề thi hóa học 11 Cánh diều
Đề thi lịch sử 11 Cánh diều
Đề thi địa lí 11 Cánh diều
Đề thi kinh tế pháp luật 11 Cánh diều
Đề thi công nghệ cơ khí 11 Cánh diều
Đề thi công nghệ chăn nuôi 11 Cánh diều
Đề thi tin học ứng dụng 11 Cánh diều
Đề thi khoa học máy tính 11 Cánh diều
Bình luận