Giải SBT Toán 11 cánh diều bài tập cuối chương III

Giải chi tiết sách bài tập Toán 11 tập 1 Cánh diều bài tập cuối chương III. Tech12h sẽ hướng dẫn giải tất cả câu hỏi và bài tập với cách giải nhanh và dễ hiểu nhất. Hi vọng, thông qua đó học sinh được củng cố kiến thức và nắm bài học tốt hơn.


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây

Bài 32 trang 82 SBT Toán 11 Tập 1: Cho limun = 2, limvn = 3. Khi đó, lim(un + vn) bằng:

A. 6.

B. 5.

C. 1

D. 2.

Lời giải:

Đáp án đúng là: B

Ta có lim(un + vn) = limun + limvn = 2 + 3 = 5.

Bài 33 trang 82 SBT Toán 11 Tập 1: Cho limun = 3, lim vn = +∞. Khi đó lim$ \frac{v_{n}}{u_{n}}$ bằng:

A. 3.

B. –∞.

C. +∞.

D. 0.

Lời giải:

Đáp án đúng là: C

Vì limun = 3 > 0, lim vn = +∞ nên lim$ \frac{v_{n}}{u_{n}}$=+∞

Bài 34 trang 82 SBT Toán 11 Tập 1: Cho hai dãy số (un), (vn) với un=$ 1-\frac{2}{n}$, vn=$ 4+\frac{2}{n+2}$. Khi đó, lim(un+$ \sqrt{v_{n}}$)  bằng:

A. 3.

B. 4.

C. 5.

D. 2.

Lời giải:

Đáp án đúng là: A

Ta có limun=lim($ 1-\frac{2}{n}$)=lim1-lim$\frac{2}{n}$=1-0=1

Và limvn=lim($ 4+\frac{2}{n+2}$)=lim4+lim$\frac{2}{n+2}$=4+0=4

Suy ra lim$\sqrt{v_{n}}$=2 .

Khi đó lim(un+$ \sqrt{v_{n}}$)=limun+ lim$\sqrt{v_{n}}$=1+2=3.

Bài 35 trang 82 SBT Toán 11 Tập 1: Biểu diễn dưới dạng phân số của 1,(7) là:

A. $ \frac{7}{9}$

B. $ \frac{10}{9}$

C. $ \frac{10}{3}$

D. $ \frac{16}{9}$

Lời giải:

Đáp án đúng là: D

Ta có: 1,(7) = 1 + 0,(7) = 1 + 0,7 + 0,07 + 0,007 + ... + 0,00007 + ...

Vì 0,7; 0,07; 0,007; ... lập thành một cấp số nhân lùi vô hạn với số hạng đầu u1 = 0,7 và công bội q = 0,1 < 1 nên

0,7 + 0,07 + 0,007 + ... + 0,00007 + ... = $ \frac{0,7}{1-0,1}=\frac{7}{9}$

Vậy 1,(7) = 1 + $ \frac{7}{9}$=$ \frac{16}{9}$

Bài 36 trang 82 SBT Toán 11 Tập 1: Cho $ \lim_{x\rightarrow 2}f(x)$=5 . Khi đó, $ \lim_{x\rightarrow 2}2f(x)$  bằng:

A. 5.

B. 2.

C. 10.

D. 7.

Lời giải:

Đáp án đúng là: C

Ta có $ \lim_{x\rightarrow 2}2f(x)$= $ \lim_{x\rightarrow 2}2$.$ \lim_{x\rightarrow 2}f(x)$=2.5=10

Bài 37 trang 82 SBT Toán 11 Tập 1: Giả sử $ \lim_{x\rightarrow 3^{+}}f(x)=4,\lim_{x\rightarrow 3^{-}}f(x)=2$. Khi đó $ \lim_{x\rightarrow 3}f(x)$ bằng:

A. 4.

B. 2.

C. 6.

D. Không tồn tại.

Lời giải:

Đáp án đúng là: D

Ta có $ \lim_{x\rightarrow 3^{+}}f(x)=4,\lim_{x\rightarrow 3^{-}}f(x)=2$ nên $ \lim_{x\rightarrow 3^{+}}f(x)\neq \lim_{x\rightarrow 3^{-}}f(x)$

Suy ra không tồn tại $ \lim_{x\rightarrow 3}f(x)$

Bài 38 trang 82 SBT Toán 11 Tập 1: Nếu $ \lim_{x\rightarrow a}f(x)$=+∞  thì Giải SBT Toán 11 cánh diều bài tập cuối chương III  bằng:

A. +∞.

B. –∞.

C. a.

D. – a.

Lời giải:

Đáp án đúng là: B

Ta có: Giải SBT Toán 11 cánh diều bài tập cuối chương III.

Mà $ \lim_{x\rightarrow a}(-1)=-1<0$ và $ \lim_{x\rightarrow a}f(x)$=+∞

Do vậy $\lim_{x\rightarrow a}(-1).\lim_{x\rightarrow a}f(x)=-\infty$

$. Vậy Giải SBT Toán 11 cánh diều bài tập cuối chương III

Bài 39 trang 82 SBT Toán 11 Tập 1: Quan sát đồ thị hàm số trong Hình 9 và cho biết:

Giải SBT Toán 11 cánh diều bài tập cuối chương III

a)  $ \lim_{x\rightarrow +\infty }f(x)$ bằng:

A. 2.

B. 1. 

C. +∞.

D. –∞.

b)  $ \lim_{x\rightarrow 0^{+}}f(x)$ bằng:

A. 2.

B. 1.

C. +∞.

D. –∞.

c) Hàm số y = f(x) liên tục trên khoảng:

A. (–∞; 1).

B. (–∞; +∞).

C. (1; +∞).

D. (–∞; 2).

Lời giải:

a) Đáp án đúng là: A

Quan sát đồ thị ta thấy khi x → +∞ thì f(x) → 2.

Vậy $ \lim_{x\rightarrow +\infty }f(x)$=2

b) Đáp án đúng là: D

Quan sát đồ thị ta thấy $ \lim_{x\rightarrow 0^{+}}f(x)$= –∞

c) Đáp án đúng là: C

Quan sát đồ thị ta thấy, hàm số y = f(x) liên tục trên khoảng (1; +∞)

Bài 40 trang 82 SBT Toán 11 Tập 1: Hàm số nào sau đây không liên tục trên tập xác định của nó?

A. y = x.

B. y= $ \frac{1}{x}$

C. y = sin x.

D. Giải SBT Toán 11 cánh diều bài tập cuối chương III

Lời giải:

Đáp án đúng là: D

- Các hàm số y = x, y = sin x liên tục trên ℝ.

- Hàm số y=$ \frac{1}{x}$ liên tục trên các khoảng xác định của nó là (–∞; 0) và (0; +∞).

- Xét hàm số Giải SBT Toán 11 cánh diều bài tập cuối chương III  có tập xác định D = ℝ.

Xét tại x = 0, ta có: $ \lim_{x\rightarrow 0^{+}}f(x)$=1, $ \lim_{x\rightarrow 0^{-}}f(x)=0$

Suy ra không tồn tại $ \lim_{x\rightarrow 0}f(x)$. Vậy hàm số này không liên tục tại x = 0.

Do vậy hàm số Giải SBT Toán 11 cánh diều bài tập cuối chương III không liên tục trên tập xác định của nó.

Bài 41 trang 82 SBT Toán 11 Tập 1: Hàm số y = tan x gián đoạn tại bao nhiêu điểm trên khoảng (0; 2π)?

A. 0.

B. 1.

C. 2.

D. 3.

Lời giải:

Đáp án đúng là: C

Hàm số y = tan x có tập xác định D=R\($ \frac{\pi }{2}$+kπ∣∣k∈Z).

Trong khoảng (0; 2π), hàm số y = tan x không xác định tại các điểm x=$ \frac{\pi }{2}$, x=$ \frac{3\pi }{2}$.

Vì hàm số y = tan x liên tục trên từng khoảng xác định của nó nên trong khoảng (0; 2π), hàm số này không liên tục tại hai điểm  x=$ \frac{\pi }{2}$, x=$ \frac{3\pi }{2}$.

Bài 42 trang 83 SBT Toán 11 Tập 1: Tính các giới hạn sau:
a) $lim\frac{2n-4}{5}$

b) $ lim\frac{1+\frac{1}{2n}}{2n}$

c) $ lim(2+\frac{7}{4^{n}})$

d) $ lim\frac{-4n^{2}-3}{2n^{2}-n+5}$

e) $ lim\frac{\sqrt{9n^{2}+2n+1}}{n-5}$

g) $ lim\frac{3^{n}+4.9^{n}}{3.4^{n}+9^{n}}$

Lời giải:

a) Vì lim(2n – 4) = +∞ và lim5 = 5 > 0 nên $lim\frac{2n-4}{5}$ =+∞.                              

b) $ lim\frac{1+\frac{1}{2n}}{2n}$=$lim\frac{n(\frac{1}{n}+\frac{1}{2n^{2}})}{2n}=lim\frac{\frac{1}{n}+\frac{1}{2n^{2}}}{lim2}=\frac{0}{2}=0$

c)Giải SBT Toán 11 cánh diều bài tập cuối chương III

=lim2+lim7.lim($\frac{1}{4}$)n=2+7.0=2.          

d) $lim\frac{-4n^{2}-3}{2n^{2}-n+5}$=$lim\frac{n^{2}(-4-\frac{3}{n^{2}})}{n^{2}(2-\frac{1}{n}+\frac{5}{n^{2}})}=lim\frac{-4-\frac{3}{n^{2}}}{2-\frac{1}{n}+\frac{5}{n^{2}}}=\frac{lim(-4-\frac{3}{n^{2}})}{lim(2-\frac{1}{n}+\frac{5}{n^{2}})}=\frac{-4}{2}=-2$

e) $lim\frac{\sqrt{9n^{2}+2n+1}}{n-5}$=$lim\frac{\sqrt{n^{2}(9+\frac{2}{n}+\frac{1}{n^{2}})}}{n-5}=lim\frac{n\sqrt{9+\frac{2}{n}+\frac{1}{n^{2}}}}{n(1-\frac{5}{n})}=lim\frac{\sqrt{9+\frac{2}{n}+\frac{1}{n^{2}}}}{1-\frac{5}{n}}=\frac{lim\sqrt{9+\frac{2}{n}+\frac{1}{n^{2}}}}{1-\frac{5}{n}}=\frac{\sqrt{9}}{1}=3$          

Giải SBT Toán 11 cánh diều bài tập cuối chương III

Bài 43 trang 83 SBT Toán 11 Tập 1: Cho tam giác T1 có diện tích bằng 1. Giả sử có tam giác T2 đồng dạng với tam giác T1, tam giác T3 đồng dạng với tam giác T2, ..., tam giác Tn đồng dạng với tam giác Tn – 1 với tỉ số đồng dạng $ \frac{1}{k}$ (k>1). Khi n tiến tới vô cùng, tính tổng diện tích của tất cả các tam giác theo k.

Lời giải:

Gọi diện tích các tam giác T1; T2; ...; T­n – 1; Tn lần lượt là S1; S2; ...; Sn – 1; Sn.

Vì tam giác Tn đồng dạng với tam giác Tn – 1 với tỉ số đồng dạng $ \frac{1}{k}$ nên diện tích tam giác Tn bằng $ \frac{1}{k^{2}}$ diện tích tam giác Tn – 1 hay Sn=$ \frac{1}{k^{2}}$Sn-1.

Vì k > 1 nên $ \frac{1}{k^{2}}$<1. Vậy S1; S2; ...; Sn – 1; Sn; ... lập thành một cấp số nhân lùi vô hạn có số hạng đầu S1 = 1 và công bội q=$ \frac{1}{k^{2}}$.

Khi đó, tổng diện tích của tất cả các tam giác nếu n tiến tới vô cùng là:

S = S1 + S2 + ... + Sn – 1 + Sn + ... =$ \frac{1}{1-\frac{1}{k^{2}}}=\frac{k^{2}}{k^{2}-1}$

Bài 44 trang 83 SBT Toán 11 Tập 1: Tính các giới hạn sau:

a)$ \lim_{x\rightarrow -\infty }\frac{2+\frac{4}{3x}}{x^{2}-1}$

b)$ \lim_{x\rightarrow 2^{+}}\frac{1}{x-2}$

c)$ \lim_{x\rightarrow 3^{+}}\frac{-5+x}{x+3}$

d)$ \lim_{x\rightarrow -\infty }\frac{14x+2}{-7x+1}$

e)$ \lim_{x\rightarrow +\infty }\frac{-2x^{2}}{3x+5}$

g)$ \lim_{x\rightarrow -\infty }\frac{\sqrt{4x^{2}+1}}{x+2}$

h)$ \lim_{x\rightarrow 1}\frac{x-1}{x^{2}-1}$

i)$ \lim_{x\rightarrow 2}\frac{x^{2}-5x+6}{x-2}$

k)$ \lim_{x\rightarrow 3}\frac{x^{2}+4x-3}{x^{2}+3x-18}$

Lời giải:

a)    $ \lim_{x\rightarrow -\infty }\frac{2+\frac{4}{3x}}{x^{2}-1}$=$\lim_{x\rightarrow -\infty }\frac{\frac{2}{x^{2}}+\frac{4}{3x^{3}}}{1-\frac{1}{x^{2}}}=\frac{0}{1}=0$

b)    $ \lim_{x\rightarrow 2^{+}}\frac{1}{x-2}$=+∞

c)    $\lim_{x\rightarrow 3^{+}}(-5+x)=-8<0;\lim_{x\rightarrow 3^{+}}(x+3)=0$ và x+3>0 với mọi x>-3

Do đó, $ \lim_{x\rightarrow 3^{+}}\frac{-5+x}{x+3}$=-∞

d)    $ \lim_{x\rightarrow -\infty }\frac{14x+2}{-7x+1}$=$\lim_{x\rightarrow -\infty }\frac{14+\frac{2}{x}}{-7+\frac{1}{x}}=\frac{14}{-7}=-2$

e)    $ \lim_{x\rightarrow +\infty }\frac{-2x^{2}}{3x+5}$=$\lim_{x\rightarrow +\infty }\frac{-2}{\frac{3}{x}+\frac{5}{x^{2}}}=-\infty$

Giải SBT Toán 11 cánh diều bài tập cuối chương III

h) $ \lim_{x\rightarrow 1}\frac{x-1}{x^{2}-1}$=$\lim_{x\rightarrow 1}\frac{x-1}{(x-1)(x+1)}=\lim_{x\rightarrow 1}\frac{1}{x+1}=\frac{1}{2}$

i) $ \lim_{x\rightarrow 2}\frac{x^{2}-5x+6}{x-2}$=$\lim_{x\rightarrow 2}\frac{(x-2)(x-3)}{x-2}=\lim_{x\rightarrow 2}(x-3)=-1$

k)$ \lim_{x\rightarrow 3}\frac{x^{2}+4x-3}{x^{2}+3x-18}$=$\lim_{x\rightarrow 3}\frac{(x-1)(3-x)}{(x+6)(x-3)}=\lim_{x\rightarrow 3}\frac{-(x-1)}{x+6}=\frac{-2}{9}$

Bài 45 trang 83 SBT Toán 11 Tập 1: Cho hàm số Giải SBT Toán 11 cánh diều bài tập cuối chương III. Tìm a để hàm số liên tục trên ℝ. ....

Lời giải:

Với x ≠ 2 thì f(x)=$ \frac{x^{2}-4}{x-2}$ liên tục trên hai khoảng (–∞; 2) và (2; +∞). 

Ta có: f(2) = a; $ \lim_{x\rightarrow 2}\frac{x^{2}-4}{x-2}=\lim_{x\rightarrow 2}\frac{(x-2)(x+2)}{x-2}=\lim_{x\rightarrow 2}(x+2)=4$

Để hàm số liên tục trên ℝ thì hàm số phải liên tục tại x = 2.

Khi đó f(2)=$ \lim_{x\rightarrow 2}f(x)$  hay a = 4.

Vậy hàm số liên tục trên ℝ khi a = 4.

Bài 46 trang 84 SBT Toán 11 Tập 1: Một bể chứa 5 000 l nước tinh khiết. Nước muối có chứa 30 gam muối trên mỗi lít nước được bơm vào bể với tốc độ 25 l/phút.

a) Chứng minh rằng nồng độ muối của nước trong bể sau t phút (tính bằng khối lượng muối chia thể tích nước trong bể, đơn vị: g/l) là C(t)= $ \frac{30t}{200+t}$.

b) Tính $ \lim_{t\rightarrow +\infty }C(t)$ và cho biết ý nghĩa của kết quả đó.

Lời giải:

a) Sau t phút thì lượng muối trong bể là 30 . 25 . t = 750t (g) và thể tích nước trong bể là 5 000 + 25t (l).

Vậy nồng độ muối của nước trong bể sau t phút là:

 C(t)=$ \frac{750t}{5000+25t}=\frac{30t}{200+t}$ (g/l).

b) Ta có: $ \lim_{t\rightarrow +\infty }C(t)=\lim_{t\rightarrow +\infty }\frac{30t}{200+t}=\lim_{t\rightarrow +\infty }\frac{30}{\frac{200}{t}+1}=\frac{30}{1}=30$

Theo kết quả đó, ta thấy khi lượng nước trong bể tăng theo thời gian đến vô hạn thì nồng độ muối của nước sẽ tăng dần đến giá trị 30 g/l, tức là xấp xỉ nồng độ muối của loại nước muối cho thêm vào bể.


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây

Nội dung quan tâm khác

Thêm kiến thức môn học

Từ khóa tìm kiếm: Giải SBT toán 11 tập 1 sách Cánh diều, Giải SBT toán 11 CD tập 1, Giải SBT toán 11 tập 1 Cánh diều bài tập cuối chương III

Bình luận

Giải bài tập những môn khác