Soạn giáo án điện tử Toán 7 Kết nối bài 16: Tam giác cân. đường trung trực của đoạn thẳng

Giáo án powerpoint toán 7 kết nối tri thức mới bài bài 16: Tam giác cân. đường trung trực của đoạn thẳng. Giáo án soạn theo tiêu chí hiện đại, đẹp mắt với nhiều hình ảnh, nội dung, hoạt động phong phú, sáng tạo. Giáo án điện tử này dùng để giảng dạy online hoặc trình chiếu. Tin rằng, bộ bài giảng này sẽ hỗ trợ tốt việc giảng dạy và đem đến sự hài lòng với thầy cô.

Cùng hệ thống với: Kenhgiaovien.com - Zalo hỗ trợ: Fidutech - nhấn vào đây

Còn nữa....Giáo án khi tải về là bản đầy đủ. Có full siles bài giảng!


Nội dung giáo án

CHÀO MỪNG CÁC EM ĐẾN VỚI TIẾT HỌC HÔM NAY

KHỞI ĐỘNG

Kiến trúc sư vẽ bản thiết kế ngôi nhà hình tam giác theo tỉ lệ 1: 100. Biết rằng ngôi nhà cao 5 m, bề ngang mặt sàn rộng 4 m và hai mái nghiêng như nhau.

Theo em, trên bản thiết kế làm thế nào để xác định được chính xác điểm C thể hiện đỉnh ngôi nhà?

BÀI 16: TAM GIÁC CÂN. ĐƯỜNG TRUNG TRỰC CỦA ĐOẠN THẲNG

NỘI DUNG BÀI HỌC

Tam giác cân

Đường trung trực của đoạn thẳng

  1. TAM GIÁC CÂN
  2. Định nghĩa

Tam giác cân là tam giác có hai cạnh bằng nhau.

Tam giác  cân tại  vì .

Hai cạnh bên: ; Cạnh đáy: ;

Hai góc ở đáy: ; Góc ở đỉnh: .

Hãy nêu tất cả các tam giác cân trong Hình 4.59. Với mỗi tam giác cân đó, hãy nêu tên cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của chúng.

  1. Tính chất

HĐ1

Quan sát tam giác  cân tại  như Hình 4.60.

Lấy  là trung điểm của đoạn thẳng .

  1. a) Chứng minh rằng theo trường hợp cạnh – cạnh – cạnh.
  2. b) Hai góc và của tam giác  có bằng nhau không?

Trả lời

  1. a) (c.c.c) vì:

          ,

          ,

           là cạnh chung.

  1. b) Do đó .

HĐ2

Cho tam giác  có . Vẽ tia phân giác  của góc  ( ). Chứng minh rằng

  1. a)
  2. b)
  3. c) Tam giác có cân tại không?

Giải

  1. a)

                                       

  1. b) (g.c.g)

 vì ,  và là cạnh chung.

  1. c) nên tam giác cân tại .

Tính chất:

Trong một tam giác cân, hai góc ở đáy bằng nhau. Ngược lại, một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.

Luyện tập 1

Tính số đo các góc và cạnh chưa biết của tam giác  trong Hình 4.62.

Giải

 cân tại , nên .

Do đó .

Vậy cũng cân tại ,

do đó .

Nhận xét: Tam giác  có các cạnh bằng nhau và các góc bằng nhau. Đó là tam giác đều.

Thử thách nhỏ: Một tam giác có gì đặc biệt nếu thoả mãn một trong các điều kiện sau:

  1. a) Tam giác có ba góc bằng nhau?
  2. b) Tam giác cân có một góc bằng ?

 


=> Xem toàn bộ Giáo án điện tử toán 7 kết nối tri thức

Từ khóa tìm kiếm:

Giáo án điện tử toán 7 kết nối tri thức, giáo án powerpoint toán 7 KNTT bài 16: Tam giác cân. đường trung trực, bài giảng điện tử toán 7 Kết nối

MỘT VÀI THÔNG TIN:

  • Word được soạn: Chi tiết, rõ ràng, mạch lạc
  • Powerpoint soạn: Hiện đại, đẹp mắt để tạo hứng thú học tập
  • Word và powepoint đồng bộ với nhau

PHÍ GIÁO ÁN:

  • Giáo án word: 300k/học kì - 350k/cả năm
  • Giáo án Powerpoint: 400k/học kì - 450k/cả năm
  • Trọn bộ word + Powerpoint: 500k/học kì - 550k/cả năm

=> Khi đặt sẽ nhận đủ giáo án cả năm ngay và luôn

CÁCH ĐẶT:

  • Bước 1: gửi phí vào tk: 10711017 - Chu Văn Trí - Ngân hàng ACB (QR)
  • Bước 2: Nhắn tin tới Zalo Fidutech - nhấn vào đây để thông báo và nhận giáo án

Xem thêm giáo án khác

1. TAM GIÁC CÂN VÀ TÍNH CHẤT

Câu hỏi: Hãy nêu tên tất cả các tam giác cân trong Hình 4.59. Với mỗi tam cân đó, hãy nêu tên cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của chúng.

Hướng dẫn giải:

Tam giác ABD cân tại đỉnh A có:

  • AB, AD là 2 cạnh bên
  • BD là cạnh đáy
  • $\widehat{B}$; $\widehat{D}$ là 2 góc ở đáy
  • $\widehat{A}$ là góc ở đỉnh

Tam giác ADC cân tại A có:

  • AC, AD là 2 cạnh bên
  • DC là cạnh đáy
  • $\widehat{C}$; $\widehat{D}$ là 2 góc ở đáy
  • $\widehat{A}$ là góc ở đỉnh

Tam giác ABC cân tại A có:

  • AB, AC là 2 cạnh bên
  • BC là cạnh đáy
  • $\widehat{C}$; $\widehat{B}$là 2 góc ở đáy
  • $\widehat{A}$là góc ở đỉnh

Hoạt động 1: Quan sát tam giác ABC cân tại A như Hình 4.60. Lấy D là trung điểm của đoạn thẳng BC.

a. Chứng minh rằng ΔABD = ΔACD theo trường hợp cạnh - cạnh - cạnh.

b. Hai góc B và C của tam giác ABC có bằng nhau không?

Hướng dẫn giải:

a. Xét hai tam giác ABD và ACD có:

  • AB=AC
  • AD chung
  • BD=DC

=> ΔABD = ΔACD (c.c.c)

b. Từ kết quả câu a.  ΔABD = ΔACD => $\widehat{B}$ = $\widehat{C}$ ( 2 góc tương ứng)

Hoạt động 2: Cho tam giác MNP có $\widehat{M}$= $\widehat{N}$.  Vẽ tia phân giác PK của tam giác MNP (K∈MN).

Chứng minh rằng:

a. $\widehat{MKP}$= $\widehat{NKP}$

b.  $\Delta$MPK= $\Delta$NPK

c. Tam giác MNP có cân tại PP không?

Hướng dẫn giải:

a. Áp dụng định lý tổng 3 góc trong một tam giác bằng $180^{\circ}$. Ta suy ra

  • $\widehat{NKP}$ = $180^{\circ}$- $\widehat{PMK}$ - $\widehat{MPK}$
  • $\widehat{NKP}$ = $180^{\circ}$- $\widehat{PNK}$ - $\widehat{NPK}$

Theo giải thuyết thì : 

$\widehat{PMK}$ = $\widehat{PNK}$ và $\widehat{MPK}$ = $\widehat{NPK}$ ( PK là tia phân giác của tam giác MNP)

=> $\widehat{NKP}$ = $\widehat{NKP}$

b. Xét $\Delta$MPK vả $\Delta$NPK, ta có :

  • $\widehat{NKP}$ = $\widehat{NKP}$
  • PK chung
  • $\widehat{PMK}$ = $\widehat{PNK}$

=>$\Delta$MPK = $\Delta$NPK (g-c-g)

c. Từ b suy ra MP=NP => $\Delta$PMN cân tại 

Luyện tập 1: Tính số đo các góc và các cạnh chưa biết của tam giác DEF trong Hình 4.62.

Hướng dẫn giải:

$\Delta$DEF có 2 cạnh FE= FD => là tam giác cân tại F

=> $\widehat{FED}$ = $\widehat{FDE}$ = $60^{\circ}$ ( 2 góc ở đáy)

Áp dụng định lý tổng 3 góc trong 1 tam giác bằng $180^{\circ}$ => $\widehat{DFE}$= $180^{\circ}$ - $60^{\circ}$- $60^{\circ}$ = $60^{\circ}$

=> Như vậy $\Delta$DEF cũng cân tại D => DE= DF = 4cm

Thử thách nhỏ: Một tam giác có gì đặc biệt nếu thoả mãn một trong các điều kiện sau:

a. Tam giác có ba góc bằng nhau?

b. Tam giác cân có một góc bằng 60°?

Hướng dẫn giải:

a. Tam giác có ba góc bằng nhau : là tam giác đều

b. Tam giác cân có một góc bằng 60° : là tam giác đều

2. ĐƯỜNG TRUNG TRỰC CỦA MỘT ĐOẠN THẲNG

Hoạt động 3: Đánh dấu hai điểm A và B nằm trên hai mép tờ giấy A4, nối A và B để được đoạn thẳng AB. Gấp mảnh giấy lại như Hình 4.63 sao cho vị trí các điểm A và B trùng nhau. Mở mảnh giấy ra, kẻ một đường thẳng d theo nếp gấp.

a. Gọi O là giao điểm của đường thẳng d và AB. O có là trung điểm của đoạn thẳng AB không?

b. Dùng thước đo góc, kiểm tra đường thẳng d có vuông góc với AB không?

Hướng dẫn giải:

a. O là trung điểm của đoạn thẳng AB

b. Dùng thước đo góc ta thấy d có vuông góc với AB.

Câu hỏi: Trong Hình 4.64, bạn Lan vẽ đường trung trực của các đoạn thẳng. Theo em, hình nào Lan vẽ đúng?

Hướng dẫn giải:

Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng đó

=> hình a) Lan vẽ đúng.

Hoạt động 4: Trên mảnh giấy trong HĐ3, lấy điểm M bất kì trên đường thẳng d. Dùng thước thẳng có vạch chia kiểm tra xem AM có bằng BM không (H.4.65).

Hướng dẫn giải:

Lấy điểm M bất kì trên đường thẳng d dùng thước kiểm tra ta thấy AM bằng BM.

Luyện tập 2: Cho M là một điểm nằm trên đường trung trực của đoạn thẳng AB. Biết AM = 3 cm và $\widehat{MAB} = 60^{\circ}$ (H.4.67). Tính BM và số đo góc MBA.

Hướng dẫn giải:

Vì M là một điểm nằm trên đường trung trực của đoạn thẳng AB nên MA=MB=3cm.

⇒ Tam giác MAB cân tại M.

$\widehat{A}$= $\widehat{B}$  = $60^{\circ}$ => $\widehat{AMB}$ = $180^{\circ}$ - $60^{\circ}$ - $60^{\circ}$ = $60^{\circ}$

=> Tam giác MAB là tam giác đều=> AB= AM = 3cm