Giải câu 11 bài ôn tập chương 4: Giới hạn

Câu 11: trang 143 sgk toán Đại số và giải tích 11

Cho dãy số \((u_n)\) với : \(u_n = \sqrt 2 + (\sqrt2)^2+......+( \sqrt 2)^n\)

Chọn mệnh đề đúng trong các mệnh đề sau:

A. \(\lim {u_n} = \sqrt 2  + {(\sqrt 2 )^2} + ... + {(\sqrt 2 )^n} = {{\sqrt 2 } \over {1 - \sqrt 2 }}\)

B. \(\lim u_n = -∞\)

C. \(\lim u_n= +∞\)

D. Dãy số \((u_n)\) không có giới hạn khi \(n \rightarrow ∞\)


Ta có \((u_n)\) là tổng \(n\) số hạng đầu tiên của một cấp số nhân có số hạng đầu là \(u_1= \sqrt 2\) và công bội là \(q = \sqrt 2\) nên:

\({u_n} = {{{u_1}(1 - {q^n})} \over {1 - q}} = {{\sqrt 2 \left[ {1 - {{(\sqrt 2 )}^n}} \right]} \over {1 - \sqrt 2 }} = {{\sqrt 2 \left[ {{{(\sqrt 2 )}^n} - 1} \right]} \over {\sqrt 2 - 1}} \)

Vì \(\sqrt 2 > 1\) nên \(\lim(\sqrt 2)^n= + ∞\)

\(\Rightarrow \lim {u_n} = \lim {{\sqrt 2 \left[ {{{(\sqrt 2 )}^n} - 1} \right]} \over {\sqrt 2 - 1}} = + \infty \)

Vậy chọn đáp án C.


Trắc nghiệm đại số và giải tích 11 bài Ôn tập chương 4 (P2)
Từ khóa tìm kiếm Google: Giải câu 11 trang 143 sgk toán đại số và giải tích 11, giải bài tập 11 trang 143 toán đại số và giải tích 11, toán đại số và giải tích 11 câu 11 trang 143, câu 11 bài ôn tập chương 4 giới hạn sgk toán đại số và giải tích 11

Bình luận

Giải bài tập những môn khác