Giải bài 1: Định nghĩa và ý nghĩa của đạo hàm
Trong chương này, chúng ta sẽ làm quen về khái niệm mới là đạo hàm. Tech12h xin chia sẻ với các bạn bài 1: Định nghĩa và ý nghĩa của đạo hàm. Với lý thuyết và các bài tập có lời giải chi tiết, hi vọng rằng đây sẽ là tài liệu hữu ích giúp các bạn học tập tốt hơn.
![Giải bài 1: Định nghĩa và ý nghĩa của đạo hàm](https://s3.tech12h.com/sites/default/files/styles/inbody400/public/bai_1_6_8.png)
Nội dung bài học gồm 2 phần:
- Lý thuyết cần biết
- Hướng dẫn giải bài tập SGK
A. Lý thuyết cần biết
I. Đạo hàm tại một điểm
1. Các bài toán dẫn đến khái niệm tìm đạo hàm
- Bài toán tìm vận tốc tức thời.
Giới hạn hữu hạn (nếu có) \(\underset{t\rightarrow t_0 }{lim }\frac{s(t)-s(t_0)}{t-t_0} \)được gọi là vận tốc tức thời của chuyển động tại thời điểm $t_0$
- Bài toán tìm cường độ tức thời.
Giới hạn hữu hạn (nếu có) \(\underset{t\rightarrow t_0 }{lim }\frac{Q(t)-Q(t_0)}{t-t_0} \)được gọi là cường độ tức thời của chuyển động tại thời điểm $t_0$
2. Định nghĩa đạo hàm tại một điểm
ĐỊNH NGHĨA
Cho hàm số \(y=f(x)\)xác định trên khoảng \((a; b)\)và \(x_0\in (a;b)\)
Nếu tồn tại giới hạn (hữu hạn) \(\underset{x\rightarrow x_0 }{lim }\frac{f(x)-f(x_0)}{x-x_0}\)thì giới hạn đó được gọi là đạo hàm của hàm số \(y=f(x)\)tại điểm \(x_0\)và kí hiệu là \(f'(x_0)\)(hoặc \(y'(x_0)\)), tức là:\(f'(x_0)=\underset{x\rightarrow x_0 }{lim }\frac{f(x)-f(x_0)}{x-x_0} \)
Chú ý:
- Đại lượng \(\Delta x=x-x_0\)được gọi là số gia của đối số tại \(x_0\).
- Đại lượng \(\Delta y=f(x)-f(x_0)=f(x_0+\Delta x)-f(x_0)\)được gọi là số gia tương ứng của hàm số.
- Như vậy, \(y'(x_0)=\underset{\Delta x\rightarrow 0 }{lim }\frac{\Delta y}{\Delta x}\)
3. Cách tính đạo hàm bằng định nghĩa
QUY TẮC
Bước 1: Giả sử \(\Delta x\)là số gia của đối số tại \(x_0\), tính \(\Delta y=f(x_0+\Delta x)-f(x_0)\)
Bước 2: Lập tỉ số \(\frac{\Delta y}{\Delta x}\)
Bước 3: Tìm \(\underset{\Delta x\rightarrow 0 }{lim }\frac{\Delta y}{\Delta x}\)
4. Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của hàm số
ĐỊNH LÍ 1
Nếu hàm số \(y=f(x)\)có đạo hàm tại \(x_0\)thì nó liên tục tại điểm đó.
Chú ý:
a. Định lí trên tương đương với khẳng đinh: Nếu hàm số $y=f(x)$ gián đoạn tại $x_0$thì nó không có đạo hàm tại điểm đó.
b. Mệnh đề đảo của định lí 1 không đúng: Một hàm số liên tục tại một điểm có thể không có đạo hàm tại điểm đó.
5. Ý nghĩa hình học của đạo hàm
ĐỊNH LÍ 2
Đạo hàm của hàm số \(y=f(x)\)tại điểm \(x_0\)là hệ số góc của tiếp tuyến \(M_0T\)của \((C)\)tại điểm \(M_0(x_0; f(x_0))\)
Phương trình tiếp tuyến
ĐỊNH LÍ 3
Phương trình tiếp tuyến của đồ thị (C) của hàm số \(y=f(x)\)tại điểm \(M_0(x_0; f(x_0))\)là:
\(y-y_0=f'(x_0)(x-x_0)\)
trong đó \(y_0=f(x_0)\)
6. Ý nghĩa vật lí của đạo hàm
- Tính vận tốc tức thời
- Tính cường độ tức thời.
II. Đạo hàm trên một khoảng
ĐỊNH NGHĨA
Hàm số \(y=f(x)\)được gọi là có đạo hàm trên khoảng \((a; b)\)nếu nó có đạo hàm tại mọi điểm x trên khoảng đó.
Khi đó, ta gọi hàm số \(f':\begin{matrix}(a;b)\rightarrow \mathbb{R} & \\ x\rightarrow f'(x) & \end{matrix}\)là đạo hàm của hàm số \(y=f(x)\)trên khoảng \((a;b)\).
Kí hiệu là $y'$hay $f'(x)$
Giải bài tập những môn khác
Giải sgk lớp 11 KNTT
Giải sgk lớp 11 CTST
Giải sgk lớp 11 cánh diều
Giải SBT lớp 11 kết nối tri thức
Giải SBT lớp 11 chân trời sáng tạo
Giải SBT lớp 11 cánh diều
Giải chuyên đề học tập lớp 11 kết nối tri thức
Giải chuyên đề toán 11 kết nối tri thức
Giải chuyên đề ngữ văn 11 kết nối tri thức
Giải chuyên đề vật lí 11 kết nối tri thức
Giải chuyên đề hóa học 11 kết nối tri thức
Giải chuyên đề sinh học 11 kết nối tri thức
Giải chuyên đề kinh tế pháp luật 11 kết nối tri thức
Giải chuyên đề lịch sử 11 kết nối tri thức
Giải chuyên đề địa lí 11 kết nối tri thức
Giải chuyên đề mĩ thuật 11 kết nối tri thức
Giải chuyên đề âm nhạc 11 kết nối tri thức
Giải chuyên đề công nghệ chăn nuôi 11 kết nối tri thức
Giải chuyên đề công nghệ cơ khí 11 kết nối tri thức
Giải chuyên đề tin học 11 định hướng Khoa học máy tính kết nối tri thức
Giải chuyên đề tin học 11 định hướng Tin học ứng dụng kết nối tri thức
Giải chuyên đề quốc phòng an ninh 11 kết nối tri thức
Giải chuyên đề hoạt động trải nghiệm hướng nghiệp 11 kết nối tri thức
Giải chuyên đề học tập lớp 11 chân trời sáng tạo
Giải chuyên đề học tập lớp 11 cánh diều
Trắc nghiệm 11 Kết nối tri thức
Trắc nghiệm 11 Chân trời sáng tạo
Trắc nghiệm 11 Cánh diều
Bộ đề thi, đề kiểm tra lớp 11 kết nối tri thức
Đề thi Toán 11 Kết nối tri thức
Đề thi ngữ văn 11 Kết nối tri thức
Đề thi vật lí 11 Kết nối tri thức
Đề thi sinh học 11 Kết nối tri thức
Đề thi hóa học 11 Kết nối tri thức
Đề thi lịch sử 11 Kết nối tri thức
Đề thi địa lí 11 Kết nối tri thức
Đề thi kinh tế pháp luật 11 Kết nối tri thức
Đề thi công nghệ cơ khí 11 Kết nối tri thức
Đề thi công nghệ chăn nuôi 11 Kết nối tri thức
Đề thi tin học ứng dụng 11 Kết nối tri thức
Đề thi khoa học máy tính 11 Kết nối tri thức
Bộ đề thi, đề kiểm tra lớp 11 chân trời sáng tạo
Bộ đề thi, đề kiểm tra lớp 11 cánh diều
Đề thi Toán 11 Cánh diều
Đề thi ngữ văn 11 Cánh diều
Đề thi vật lí 11 Cánh diều
Đề thi sinh học 11 Cánh diều
Đề thi hóa học 11 Cánh diều
Đề thi lịch sử 11 Cánh diều
Đề thi địa lí 11 Cánh diều
Đề thi kinh tế pháp luật 11 Cánh diều
Đề thi công nghệ cơ khí 11 Cánh diều
Đề thi công nghệ chăn nuôi 11 Cánh diều
Đề thi tin học ứng dụng 11 Cánh diều
Đề thi khoa học máy tính 11 Cánh diều
Bình luận