Phần bài tập Ôn tập cuối năm

Người đăng: Nguyễn Thị Hằng Nga - Ngày: 21/11/2017

Để củng cố về toàn bộ kiến thức chương trình lớp 11, Tech12h xin chia sẻ với các bạn bài: Ôn tập cuối năm thuộc phần đại số và giải tích lớp 11. Với lý thuyết và các bài tập có lời giải chi tiết, hi vọng rằng đây sẽ là tài liệu hữu ích giúp các bạn học tập tốt hơn.

Phần bài tập Ôn tập cuối năm

Nội dung bài học gồm 2 phần:

  • Lý thuyết cần biết
  • Hướng dẫn giải bài tập SGK

A. Lý thuyết cần biết

I. Hàm số lượng giác và phương trình lượng giác

1. Hàm số lượng giác => xem chi tiết

2. Phương trình lượng giác cơ bản => xem chi tiết

3. Một số phương trình lượng giác thường gặp => xem chi tiết

II. Tổ hợp - Xác suất

1. Quy tắc đếm => xem chi tiết

2. Hoán vị - Chỉnh hợp - Tổ hợp => xem chi tiết

3. Nhị thức Niu - tơn => xem chi tiết

4. Phép thử và biến cố => xem chi tiết

5. Xác suất của biến cố => xem chi tiết

III. Dãy số, cấp số cộng và cấp số nhân

1. Phương pháp quy nạp toán học => xem chi tiết

2. Dãy số => xem chi tiết

3. Cấp số cộng => xem chi tiết

4. Cấp số nhân => xem chi tiết

IV. Giới hạn

1. Giới hạn của dãy số => xem chi tiết

2. Giới hạn của hàm số => xem chi tiết

3. Hàm số liên tục => xem chi tiết

V. Đạo hàm

1. Định nghĩa và ý nghĩa của đạo hàm => xem chi tiết

2. Quy tắc tính đạo hàm => xem chi tiết

3. Đạo hàm của hàm số lượng giác => xem chi tiết

4. Vi phân => xem chi tiết

5. Đạo hàm cấp hai => xem chi tiết

B. BÀI TẬP VÀ HƯỚNG DẪN GIẢI

Bài 1: trang 178 sgk toán Đại số và giải tích 11

Cho hàm số \(y = \cos 2x\)

a) Chứng minh rằng: \(\cos 2(x + k π) = \cos 2x\) với mọi số nguyên \(k\). Từ đó vẽ đồ thị (C) của hàm số \(y = \cos2x\).

b) Viết phương trình tiếp tuyến của đồ thị (C)  tại điểm có hoành độ \(x = {\pi  \over 3}\)

c) Tìm tập xác định của hàm số \(z = \sqrt {{{1 - \cos 2x} \over {1 + {{\cos }^2}2x}}} \)

Bài 2: trang 179 sgk toán Đại số và giải tích 11

Cho hàm số \(y = {5 \over {6 + 7\sin 2x}}\)

a) Tính \(A = {5 \over {6 + 7\sin 2x}}\) , biết rằng \(\tan α = 0,2\)

b) Tính đạo hàm của hàm đã cho.

c) Xác định các khoảng trên đó \(y’\) không dương.

Bài 3: trang 179 sgk toán Đại số và giải tích 11

Giải các phương trình

a) \(2\sin {x \over 2}{\cos ^2}x - 2\sin {x \over 2}{\sin ^2}x = {\cos ^2}x - {\sin ^2}x\)

b) \(3cos x + 4sin x = 5\)

c) \(sin x + cos x = 1 + sin x. cosx\)

d) \(\sqrt {1 - \cos x}  = \sin x(x \in \left[ {\pi ,3\pi } \right]\)

e) \((cos{x \over 4} - 3\sin x)sinx + (1 + sin{x \over 4} - 3\cos x)cosx = 0\)

Bài 4: trang 179 sgk toán Đại số và giải tích 11

Trong một bệnh viện có \(40\) bác sĩ ngoại khoa. Hỏi có bao nhiêu cách phân công ca mổ, nếu mỗi ca gồm:

a) Một bác sĩ mổ, một bác sĩ phụ

b) Một bác sĩ mổ và \(4\) bác sĩ phụ.

Bài 5: trang 179 sgk toán Đại số và giải tích 11

Tìm số hạng không chứa \(a\) trong khai triển nhị thức

Bài 6: trang 179 sgk toán Đại số và giải tích 11

Chọn ngẫu nhiên ba học sinh từ một tổ gồm sáu nam và bốn nữ. Tính xác suất sao cho:

a) Cả ba học sinh đều là nam

b) Có ít nhất một nam

Bài 7: trang 179 sgk toán Đại số và giải tích 11

Một tiểu đội có \(10\) người được xếp ngẫu nhiên thành hàng dọc, trong đó có anh \(A\) và anh \(B\). Tính xác suất sao cho:

a) \(A\) và \(B\) đứng liền nhau

b) Trong hai người có một người đứng ở vị trí số 1 và người kia đứng ở vị trí cuối cùng.

Bài 8: trang 180 sgk toán Đại số và giải tích 11

Tìm cấp số cộng tăng, biết rằng tổng ba số hạng đầu của nó bằng \(27\) và tổng các bình phương của chúng bằng \(275\)

Bài 9: trang 180 sgk toán Đại số và giải tích 11

Cho biết trong một cấp số nhân, hiệu của số hạng thứ ba và số hạng thứ hai bằng 12 và nếu thêm 10 vào số hạng thứ nhất, thêm 8 vào số hạng thứ hai, còn giữ nguyên số hạng thứ ba thì ba số mới lập thành một cấp số cộng. Hãy tính tổng của năm số hạng đầu của cấp số nhân đã cho

Bài 10: trang 180 sgk toán Đại số và giải tích 11

Tính các giới hạn sau

a) \(\lim {{(n + 1){{(3 - 2n)}^2}} \over {{n^3} + 1}}\)

b) \(\lim ({1 \over {{n^2} + 1}} + {2 \over {{n^2} + 1}} + {3 \over {{n^2} + 1}} + ... + {{n - 1} \over {{n^2} + 1}})\)

c) \(\lim {{\sqrt {4n + 1}  + n} \over {2n + 1}}\)

d) \(\lim \sqrt n (\sqrt {n - 1}  - \sqrt n )\)

Bài 11: trang 180 sgk toán Đại số và giải tích 11

Cho hai dãy số \((u_n)\), \((v_n)\) với 

\({u_n} = {n \over {{n^2} + 1}}\) và \({v_n} = {{n\cos {\pi  \over n}} \over {{n^2} + 1}}\)

a) Tính \(\lim u_n\)

b) Chứng minh rằng \(\lim v_n= 0\)

Bài 12: trang 180 sgk toán Đại số và giải tích 11

Chứng minh rằng hàm số \(y = \cos x\) không có giới hạn khi \(x \rightarrow + ∞\)

Bài 13: trang 180 sgk toán Đại số và giải tích 11

Tính các giới hạn sau

a) \(\mathop {\lim }\limits_{x \to  - 2} {{6 - 3x} \over {\sqrt {2{x^2} + 1} }}\)

b) \(\mathop {\lim }\limits_{x \to 2} {{x - \sqrt {3x - 2} } \over {{x^2} - 4}}\)

c) \(\mathop {\lim }\limits_{x \to {2^ + }} {{{x^2} - 3x + 1} \over {x - 2}}\)

d) \(\mathop {\lim }\limits_{x \to {1^ - }} (x + {x^2} + ... + {x^n} - {n \over {1 - x}});n \in {N^*}\)

e) \(\mathop {\lim }\limits_{x \to  + \infty } {{2x - 1} \over {x - 3}}\) 

f) \(\mathop {\lim }\limits_{x \to  - \infty } {{x + \sqrt {4{x^2} - 1} } \over {2 - 3x}}\)

g) \(\mathop {\lim }\limits_{x \to  - \infty } ( - 2{x^3} + {x^2} - 3x + 1)\)

Bài 14: trang 181 sgk toán Đại số và giải tích 11

Chứng minh rằng phương trình sau có ít nhất một nghiệm: \(\sin x = x – 1\)

Bài 15: trang 181 sgk toán Đại số và giải tích 11

Phương trình sau có nghiệm hay không trong khoảng \((-1, 3)\): \(x^4– 3x^3+ x – 1 = 0\)

Bài 16: trang 181 sgk toán Đại số và giải tích 11

Giải các phương trình

a) \(f’(x) = g(x)\) với \(f(x) = \sin^3 2x\) và \(g(x) = 4\cos2x - 5\sin4x\)

b) \(f’(x) = 0\) với \(f(x) = 20\cos3x + 12\cos5x - 15\cos4x\)

Bài 17: trang 181 sgk toán Đại số và giải tích 11

Tính đạo hàm của các hàm số sau

a) \(y = {1 \over {{{\cos }^2}3x}}\)                                                         

b) \(y = {{\cos \sqrt {{x^2} + 1} } \over {\sqrt {{x^2} + 1} }}\)

c) \(y = (2 - {x^2})cosx + 2x.sinx\)                             

d) \(y = {{\sin x - x.cosx} \over {\cos x + x.\sin x}}\)

Bài 18: trang 181 sgk toán Đại số và giải tích 11

Tính đạo hàm cấp hai của các hàm số sau

a) \(y = {1 \over {x + 1}}\)                                        

b) \(y = {1 \over {x(1 - x)}}\)

c) \(y = sin ax\) (\(a\) là hàm số)

d) \(y = sin^2 x\)

Bài 19: trang 181 sgk toán Đại số và giải tích 11

Cho hàm số: \(f(x) = x^3+ bx^2+ cx + d\) (C)

Hãy xác định các số \(b, c, d\), biết rằng đồ thị hàm số (C) của hàm số \(y = f(x)\) đi qua các điểm \((-1, -3), (1, -1)\) và \(f'({1 \over 3}) = 0\)

Bài 20: trang 181 sgk toán Đại số và giải tích 11

Cho các hàm số:

\(f(x) =x^3+ bx^2+ cx + d\) (C)

\( g(x) = x^2– 3x + 1\)

với các số \(b, c, d\) tìm được ở bài 19, hãy:

a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ \(x = -1\)

b) Giải phương trình \(f’(sinx) = 0\)

c) Tìm \(\mathop {\lim }\limits_{x \to 0} {{f''(\sin 5x) + 1} \over {g'(\sin 3x) + 3}}\)


Một số bài khác

Bình luận