Giải bài tập 13 trang 12 SBT toán 8 tập 1 cánh diều:

Bài tập 13 trang 12 SBT toán 8 tập 1 cánh diều:

Cho hai đơn thức: A = ‒132xn+1y10zn+2; B = 1,2x5ynzn+1 với n là số tự nhiên.

a) Tìm các số tự nhiên n để đơn thức A chia hết cho đơn thức B.

b) Tìm đa thức P sao cho P = A : B.

c) Tính giá trị của đa thức P tại n = 9; x = 2; y = –1; z = 5,8.


a) Đơn thức A chia hết cho đơn thức B khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.

=> 5 ≤ n + 1; n ≤ 10; n + 1 ≤ n + 2 hay 4 ≤ n ≤ 10.

Mà n ∈ ℕ nên n ∈ {4; 5; 6; 7; 8; 9; 10}.

Vậy n ∈ {4; 5; 6; 7; 8; 9; 10}thì đơn thức A chia hết cho đơn thức B.

b) Ta có: P = A : B

= (‒132xn+1y10zn+2) : (1,2x5ynzn+1)

= (‒132 : 1,2)(xn+1: x5)(y10:yn)(zn+2: zn + 1)

= ‒110xn+1‒5y10‒nzn+2‒n‒1

= ‒110xn‒4y10‒nz.

Vậy P = ‒110xn‒4y10‒nz.

c) Thay n = 9; x = 2; y = –1; z = 5,8 vào P ta có:

P = ‒110.29‒4.(‒1)10‒9.5,8

= ‒110.25.(–1).5,8

= 110. 32 . 5,8

= 20 416.

Vậy P = 20 416.


Bình luận

Giải bài tập những môn khác