Lý thuyết trọng tâm toán 7 chân trời bài 3: Tam giác cân

Tổng hợp kiến thức trọng tâm toán 7 chân trời sáng tạo bài 3: Tam giác cân. Tài liệu nhằm củng cố, ôn tập lại nội dung kiến thức bài học cho học sinh dễ nhớ, dễ ôn luyện. Kéo xuống để tham khảo


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây

1. TAM GIÁC CÂN 

HĐKP1:

Lý thuyết trọng tâm toán 7 chân trời bài 3: Tam giác cân

SA = SB.

=> Kết luận:

Tam giác cân là tam giác có hai cạnh bằng nhau.

Lý thuyết trọng tâm toán 7 chân trời bài 3: Tam giác cân

Tam giác ABC với AB = AC được gọi là tam giác cân tại A. AB, AC là các cạnh bên, BC là cạnh đáy, B và C là các góc ở đáy, A là góc ở đỉnh.

Ví dụ 1: SGK – tr60.

Thực hành 1: 

Lý thuyết trọng tâm toán 7 chân trời bài 3: Tam giác cân

Tam giác cân

Cạnh bên

Cạnh đáy

Góc ở đỉnh

Góc ở đáy

ΔMHP

MP = MH

HP

HMP

MPH,

MHP.

ΔMEF

ME = MF

EF

EMF

MEF, MFE.

ΔMNP

MN = MP

NP

NMP

MNP, MPN..

2. TÍNH CHẤT CỦA TAM GIÁC CÂN 

HĐKP2: SGK -tr60

Lý thuyết trọng tâm toán 7 chân trời bài 3: Tam giác cân

Xét ΔAMB và ΔAMC có:

AB = AC

MB = MC

AM là cạnh góc vuông

Vậy ΔAMB=ΔAMC (c.c.c).

=> $\widehat{ABC}=\widehat{ACB}$

Định lí 1:

Trong một tam giác cân, hai góc ở đáy bằng nhau.

Ví dụ 2: SGK  - tr60.

Thực hành 2:

Lý thuyết trọng tâm toán 7 chân trời bài 3: Tam giác cân

Tam giác MNP có MN = MP nên ΔMNP cân tại M.

=>  $\widehat{N}=\widehat{P}=70°$

=> $\widehat{M}=180°-70°-70°=40°$

b) Tam giác EFH có EF = FH nên ΔEFH cân tại E. 

=>  $\widehat{F}=\widehat{H}=(180°-70°):2=55°$

Vận dụng 1:

Lý thuyết trọng tâm toán 7 chân trời bài 3: Tam giác cân

HĐKP3:

Xét ΔAHB và ΔCHB cùng vuông tại H, ta có:

BH là cạnh góc vuông 

$\widehat{HAB}=\widehat{HCB}$ => $\widehat{ABH}=\widehat{CBH}$

(vì $\widehat{ABH}=90°-\widehat{HAB};\widehat{CBH}=90°-\widehat{HCB}$)

Vậy ΔAHB = ΔCHB. Suy ra BA = BC.

Định lí 2:

Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.

Ví dụ 3: (SGK -tr61)

Thực hành 3:

Lý thuyết trọng tâm toán 7 chân trời bài 3: Tam giác cân

Các tam giác cân: ΔABC cân tại A, ΔMNP cân tại N.

Chú ý:

- Tam giác đều là tam giác có ba cạnh bằng nhau

- Tam giác vuông cân là tam giác vuông và cân.

Vận dụng 2:

Lý thuyết trọng tâm toán 7 chân trời bài 3: Tam giác cân

+) Vì ΔABC có AB = AC nên ΔABC cân tại A.

=> $\widehat{ABC}=\widehat{ACB}=60°$

=> $\widehat{ACB}=180°-60°-60°=60°$

+) $\widehat{BAC}=\widehat{BCA}=60°$

=>  ΔABC cân tại B

=>  BA = BC.

Theo chứng minh trên: AB = AC = BC

=> ΔABC tam giác đều.

Nhận xét:

- Tam giác cân có một góc bằng 60° là tam giác đều.

- Tam giác cân có một góc ở đáy bằng 45° là tam giác vuông cân.


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây

Nội dung quan tâm khác

Thêm kiến thức môn học

Từ khóa tìm kiếm: Tóm tắt kiến thức toán 7 CTST bài 3: Tam giác cân, kiến thức trọng tâm toán 7 chân trời bài 3: Tam giác cân, Ôn tập toán 7 chân trời sáng tạo bài 3: Tam giác cân

Bình luận

Giải bài tập những môn khác