5 phút giải Toán 12 tập 2 cánh diều trang 103

5 phút giải Toán 12 tập 2 cánh diều trang 103. Giúp học sinh nhanh chóng, mất ít thời gian để giải bài. Tiêu chi bài giải: nhanh, ngắn, súc tích, đủ ý. Nhằm tạo ra bài giải tốt nhất. 5 phút giải bài, bằng ngày dài học tập.


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây

BÀI TẬP CUỐI CHƯƠNG VI

PHẦN I. HỆ THỐNG BÀI TẬP CUỐI SGK

Bài 1: Cho hai biến cố xung khắc A, B với P(A) = 0,2; P(B) = 0,4. Khi đó, P(A | B) bằng:

A. 0,5.

B. 0,2.

C. 0,4.

D. 0.

Bài 2: Một chiếc hộp có 40 viên bi, trong đó có 12 viên bi màu đỏ và 28 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Ngân lấy ngẫu nhiên viên bi từ chiếc hộp đó hai lần, mỗi lần lấy ra một viên bi và viên bi được lấy ra không bỏ lại hộp. Tính xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng.

Bài 3: Một cửa hàng kinh doanh tổ chức rút thăm trúng thưởng cho hai loại sản phẩm. Tỷ lệ trúng thưởng của các loại sản phẩm I, II lần lượt là: 6%; 4%. Trong một hộp kín gồm các thăm cùng loại, người ta để lẫn lộn 200 chiếc thăm cho sản phẩm loại I và 300 chiếc thăm cho sản phẩm loại II. Một khách hàng lấy ngẫu nhiên 1 chiếc thăm từ chiếc hộp đó.

a) Tính xác suất để chiếc thăm được lấy ra là trúng thưởng.

b) Giả sử chiếc thăm được lấy ra là trúng thưởng. Xác suất chiếc thăm đó thuộc loại sản phẩm nào là cao nhất?

Bài 4: Một xạ thủ bắn vào bia số 1 và bia số 2. Xác suất để xạ thủ đó bắn trúng bia số 1,

bia số 2 lần lượt là 0,8; 0,9. Xác suất để xạ thủ đó bắn trúng cả hai bia là 0,8. Xét hai

biến cố sau:

A: “Xạ thủ đó bắn trúng bia số 1";

B: “Xạ thủ đó bắn trúng bia số 2".

a) Hai biến cố A và B có độc lập hay không?

b) Biết xạ thủ đó bắn trúng bia số 1, tính xác suất xạ thủ đó bắn trúng bia số 2.

c) Biết xạ thủ đó không bắn trúng bia số 1, tính xác suất xạ thủ đó bắn trúng bia số 2.

Bài 5: Giả sử trong một nhóm người có 2 người nhiễm bệnh, 58 người còn lại là không nhiễm bệnh. Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm đó. Biết rằng đối với người nhiễm bệnh, xác suất xét nghiệm có kết quả dương tính là 85%, nhưng đối với người không nhiễm bệnh thì xác suất để bị xét nghiệm có phản ứng dương tính là 7%.

a) Vẽ sơ đồ hình cây biểu thị tình huống trên.

b) Giả sử X là một người trong nhóm bị xét nghiệm có kết quả dương tính. Tính xác suất để X là người nhiễm bệnh.

PHẦN II. 5 PHÚT GIẢI BÀI TẬP CUỐI SGK

Bài 1: Đáp án D

Bài 2: Xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng là

Bài 3: a) Xác suất để chiếc thăm được lấy ra là trúng thưởng là 0,1.

b) Xác suất chiếc thăm trúng thưởng thuộc loại sản phẩm I và II bằng nhau.

Bài 4: a) 

Hai biến cố A và B không độc lập.

b) Nếu biết xạ thủ bắn trúng bia số 1, xác suất xạ thủ đó bắn trúng bia số 2 là 1.

c) Nếu biết xạ thủ không bắn trúng bia số 1, xác suất xạ thủ đó bắn trúng bia số 2 là 0,5.

Bài 5: a) 

b) Tính xác suất để X là người nhiễm bệnh khi xét nghiệm có kết quả dương tính:


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây

Nội dung quan tâm khác

Thêm kiến thức môn học

Từ khóa tìm kiếm:

giải 5 phút Toán 12 tập 2 cánh diều, giải Toán 12 tập 2 cánh diều trang 103, giải Toán 12 tập 2 CD trang 103

Bình luận

Giải bài tập những môn khác