Giải Hoạt động 2 trang 67 sgk Toán 11 tập 1 Cánh diều

Hoạt động 2 trang 67 sgk Toán 11 tập 1 CD: Cho hàm số f(x) = $x^{2}$ – 1, g(x) = x + 1.

a) $\underset{x\rightarrow 1}{lim}f(x)$ và $\underset{x\rightarrow 1}{lim}g(x)$

b) $\underset{x\rightarrow 1}{lim}(f(x)+g(x))$ và so sánh với $\underset{x\rightarrow 1}{lim}f(x)+\underset{x\rightarrow 1}{lim}g(x)$

c) $\underset{x\rightarrow 1}{lim}(f(x)-g(x))$ và so sánh với $\underset{x\rightarrow 1}{lim}f(x)-\underset{x\rightarrow 1}{lim}g(x)$

d) $\underset{x\rightarrow 1}{lim}(f(x).g(x))$ và so sánh với $\underset{x\rightarrow 1}{lim}f(x).\underset{x\rightarrow 1}{lim}g(x)$

e) $\underset{x\rightarrow 1}{lim}\frac{f(x)}{g(x)}$ và so sánh với $\frac{\underset{x\rightarrow 1}{lim}f(x)}{\underset{x\rightarrow 1}{lim}g(x)}$


a) Giả sử (x$_{n}$) là dãy số bất kì thỏa mãn limx$_{n}$ = 1. Khi đó ta có:

$limf(x_{n})=lim(x_{n}^{2}-1)=limx_{n}^{2}-1=1-1=0$

⇒ limf(x) = 0.

$limg(x_{n}) = lim(x_{n}+1) = limx_{n}+1 = 2$

⇒ limg(x) = 2.

b) Ta có: $f(x) + g(x) = x^{2} – 1 + x + 1 = x^{2} + x$

(x$_{n}$) là dãy số bất kì thỏa mãn limx$_{n}$ = 1. Khi đó ta có:

$lim(f(x_{n})+g(x_{n}))=lim(x_{n}^{2}+x_{n})=limx_{n}^{2}+limx_{n}=1^{2}+1=2$

$\Rightarrow \underset{x\rightarrow 1}{lim}(f(x)+g(x))=2$

Ta lại có: $\underset{x\rightarrow 1}{lim}f(x)+\underset{x\rightarrow 1}{lim}g(x)=0+2=2$

Vậy $\underset{x\rightarrow 1}{lim}(f(x)+g(x))=\underset{x\rightarrow 1}{lim}f(x)+\underset{x\rightarrow 1}{lim}g(x)=2$

c) Ta có: $f(x) – g(x) = x^{2} – 1 – x – 1 = x^{2} – x – 2$

(x$_{n}$) là dãy số bất kì thỏa mãn limx$_{n}$ = 1. Khi đó ta có:

$lim(f(x_{n})-g(x_{n}))=lim(x_{n}^{2}-x_{n}-2)=limx_{n}^{2}-limx_{n}-2=1^{2}-1-2=-2$

$\Rightarrow \underset{x\rightarrow 1}{lim}(f(x)-g(x))=-2$

Ta lại có: $\underset{x\rightarrow 1}{lim}f(x)-\underset{x\rightarrow 1}{lim}g(x)=0-2=-2$

Vậy $\underset{x\rightarrow 1}{lim}(f(x)-g(x))=\underset{x\rightarrow 1}{lim}f(x)-\underset{x\rightarrow 1}{lim}g(x)=-2$

d) Ta có: $f(x).g(x) = (x^{2} – 1)(x + 1) = x^{3} + x^{2} – x – 1$

(x$_{n}$) là dãy số bất kì thỏa mãn limx$_{n}$ = 1. Khi đó ta có:

$lim(f(x_{n}).g(x_{n}))=lim(x_{n}^{3}+x_{n}^{2}-x_{n}-1)$

$=limx_{n}^{3}+limx_{n}^{2}-limx_{n}-1=1^{3}+1^{2}-1-1=0$

$\Rightarrow \underset{x\rightarrow 1}{lim}(f(x).g(x))=0$

Ta lại có: $\underset{x\rightarrow 1}{lim}f(x).\underset{x\rightarrow 1}{lim}g(x)=0.2=0$

Vậy $\underset{x\rightarrow 1}{lim}(f(x).g(x))=\underset{x\rightarrow 1}{lim}f(x).\underset{x\rightarrow 1}{lim}g(x)=0$

e) Ta có: $\frac{f(x)}{g(x)}=\frac{x^{2}-1}{x+1}$

(x$_{n}$) là dãy số bất kì thỏa mãn limx$_{n}$ = 1. Khi đó ta có:

$lim\frac{f(x_{n})}{g(x_{n})}=lim\frac{x_{n}^{2}-1}{x_{n}+1}$

$=lim\frac{(x_{n}-1)(x_{n}+1)}{x_{n}+1}=lim(x_{n}-1)=0$

$\Rightarrow \underset{x\rightarrow 1}{lim}\frac{f(x)}{g(x)}=0$

Ta lại có: $\frac{limf(x)}{limg(x)}=\frac{0}{2}=0$

Vậy $\underset{x\rightarrow 1}{lim}\frac{f(x)}{g(x)}=\frac{\underset{x\rightarrow 1}{lim}f(x)}{\underset{x\rightarrow 1}{lim}g(x)}$


Trắc nghiệm Toán 11 cánh diều bài 2 Giới hạn của hàm số

Bình luận

Giải bài tập những môn khác