Giải Bài tập 2 trang 141 Toán 11 tập 1 Chân trời

Bài tập 2 trang 141 Toán 11 tập 1 Chân trời: Số điểm một cầu thủ bóng rổ ghi được trong 20 trận đấu được cho ở bảng sau:

25

23

21

13

8

14

15

18

22

11

24

12

14

14

18

6

8

25

10

11

a) Tìm tứ phân vị của dãy số liệu trên

b) Tổng hợp lại dãy số liệu vào bảng tần số ghép nhóm theo mẫu sau:

Điểm số

[6;10]

[11;15]

[16;20]

[21;25]

Số trận

?

?

?

?

c) Hãy ước lượng phân vị của số liệu từ bảng tần số ghép nhóm trên


a) Tứ phân vị thứ nhất là: 11

Tứ phân vị thứ hai là: 14

Tứ phân vị thứ ba là: 21,5

b) 

Điểm số

[6;10]

[11;15]

[16;20]

[21;25]

Số trận

3

9

2

6

c) Vì số trận là số nguyên nên ta hiệu chỉnh lại như sau:

Điểm số

[5,5;10,5)

[10,5;15,5)

[15,5;20,5)

[20,5;25,5)

Số trận

3

9

2

6

Gọi $x_{1};x_{2};x_{3};...;x_{20}$ lần lượt là số trận theo thứ tự không gian

Do $x_{1},...,x_{3} \in [5,5;10,5); x_{4},...,x_{12} \in [10,5;15,5);x_{13},x_{14} \in [15,5;20,5)$; $x_{15},...,x_{20} \in [20,5;25,5)$

Tứ phân vị thứ hai của dãy số liệu là $\frac{1}{2}(x_{10}+x_{11})$ thuộc nhóm [10,5;15,5) nên tứ phân vị thứ hai của mẫu số liệu là $Q_{2} =  10,5 + \frac{\frac{20}{2}-3}{9}(15,5-10,5) = 14,4$

Tứ phân vị thứ nhất của dãy số liệu là $\frac{1}{2}(x_{5}+x_{6})$ thuộc nhóm [10,5;15,5) nên tứ phân vị thứ nhất của mẫu số liệu là $Q_{1} =  10,5 + \frac{\frac{20}{4}-3}{9}(15,5-10,5) = 11,6$

Tứ phân vị thứ ba của dãy số liệu là $\frac{1}{2}(x_{15}+x_{16})$ thuộc nhóm [20,5;25,5) nên tứ phân vị thứ ba của mẫu số liệu là $Q_{3} =  20,5 + \frac{\frac{3.20}{4}-14}{6}(25,5-20,5) = 21,3$


Trắc nghiệm Toán 11 Chân trời bài 2 Trung vị và tứ phân vị của mẫu số liệu ghép nhóm

Bình luận

Giải bài tập những môn khác