Giải bài tập 9.24 trang 69 SBT toán 10 tập 2 kết nối
B - TỰ LUẬN
9.24. Gieo ba con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên ba con xúc xắc bằng 7.
Số kết quả khi gieo ba con xúc xắc cân đối và đồng chất là: 6 x 6 x 6 = 216.
Do đó, n(Ω) = 216.
Gọi A là biến cố: “Tổng số chấm xuất hiện trên ba con xúc xắc bằng 7”.
A = {(a, b, c): a + b + c = 7} với a, b, c lần lượt là số chấm xuất hiện trên ba con xúc xắc.
Ta có:
(a, b, c) = (1, 1, 5), khi hoán vị ta có 3 cách {(1, 1, 5); (1, 5, 1); (5, 1, 1)}
(a, b, c) = (1, 2, 4), khi hoán vị ta có 6 cách {(1, 2, 4}; (1, 4, 2); (2, 1, 4); (4, 1, 2}; (4, 2, 1); (2, 4, 1)}
(a, b, c) = (1, 3, 3), khi hoán vị ta có 3 cách {(1, 3, 3); (3, 1, 3); (3, 3, 1)}
(a, b, c) = (2, 2, 3), khi hoán vị ta có 3 cách {(3, 2, 2); (2, 3, 2); (2, 2, 3)}
Do đó, n(A) = 3 + 6 + 3 + 3 = 15.
Vậy P(A) = $\frac{n(A)}{n(\Omega )}=\frac{15}{216}=\frac{5}{72}$
Xem toàn bộ: Giải SBT toán 10 Kết nối Bài tập cuối chương IX
Bình luận