Giải bài tập 9.19 trang 68 SBT toán 10 tập 2 kết nối

9.19. Mũi tên của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong 7 vị trí. Người chơi được quay 3 lần. Xác suất để mũi tên dừng lại ở ba vị trí khác nhau là

A. $\frac{30}{49}$

B. $\frac{29}{50}$

C. $\frac{3}{5}$

D. $\frac{7}{11}$


Quay ngẫu nhiên 3 lần, mỗi lần có thể dừng lại ở một trong 7 vị trí.

Do đó, n(Ω) = 7 x 7 x 7 = 343.

Gọi biến cố A: “mũi tên dừng lại ở ba vị trí khác nhau trong 3 lần quay”.

Đáp án: A


Bình luận

Giải bài tập những môn khác