Giải thực hành 5 trang 31 chuyên đề toán 10 chân trời sáng tạo

Thực hành 5: Chứng minh rằng trong mặt phẳng, n đường thẳng khác nhau cùng đi qua một điểm chia mặt phẳng thành 2n phần (n element of straight natural numbers to the power of asterisk times)


Với n = 1, ta có rõ ràng một đường thẳng chia mặt phẳng thành 2 phần.

Giả sử khẳng định đúng với n = k ≥ 1, nghĩa là có: k đường thẳng khác nhau đi qua một điểm chia mặt phẳng ra thành 2k phần.

Ta cần chứng minh khẳng định đúng với n = k + 1, nghĩa là cần chứng minh: (k + 1) đường thẳng khác nhau đi qua một điểm chia mặt phẳng ra thành 2(k + 1) phần.

Sử dụng giả thiết quy nạp, ta có:

Nếu dựng đường thẳng đi qua điểm đã cho và không trùng với đường thẳng nào trong số những đường thẳng còn lại, thì ta nhận thêm 2 phần của mặt phẳng. Như vậy tổng số phần mặt phẳng là của 2k cộng thêm 2 , nghĩa là 2(k + 1).

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.


Bình luận

Giải bài tập những môn khác