Giải bài 4 Tích vô hướng của hai vectơ
Giải bài 4: Tích vô hướng của hai vectơ - sách chân trời sáng tạo toán 10 tập 1. Phần đáp án chuẩn, hướng dẫn giải chi tiết cho từng bài tập có trong chương trình học của sách giáo khoa. Hi vọng, các em học sinh hiểu và nắm vững kiến thức bài học.
1. GÓC GIỮA HAI VECTƠ
Khám phá 1: Cho hình vuông ABCD có tâm I (Hình 1).
a. Tính $\widehat{IDC}$.
b. Tìm hai vectơ cùng có điểm đầu là D và điểm cuối lần lượt là I và C.
c. Tìm hai vectơ cùng có điểm đầu là D và lần lượt bằng vectơ $\vec{IB}$ và $\vec{AB}$.
Hướng dẫn giải:
a. $\widehat{DIC}$ = $45^{\circ}$
b. Hai vectơ cần tìm là $\vec{DI}$ và $\vec{DC}$
c. $\vec{DI}$ = $\vec{IB}$; $\vec{DC}$ = $\vec{AB}$
Thực hành 1: Cho tam giác đều ABC có H là trung điểm của cạnh BC. Tìm các góc: ($\vec{AB}$, $\vec{AC}$), ($\vec{AB}$, $\vec{BC}$), ($\vec{AH}$, $\vec{BC}$), ($\vec{BH}$, $\vec{BC}$), ($\vec{HB}$, $\vec{BC}$)
Hướng dẫn giải:
Lấy điểm D sao cho AD // BC và AD = BC
- ($\vec{AB}$, $\vec{AC}$) = $\widehat{BAC} = 60^{\circ}$
- ($\vec{AB}$, $\vec{BC}$) = ($\vec{AB}$, $\vec{AD}$) = $\widehat{BAD} = 120^{\circ}$
- ($\vec{AH}$, $\vec{BC}$) = ($\vec{AH}$, $\vec{AD}$) = $\widehat{HAD} = 90^{\circ}$
Do hai vectơ $\vec{BH}$ và $\vec{BC}$ cùng hướng nên ($\vec{BH}$, $\vec{BC}$) = $0^{\circ}$
Do hai vectơ $\vec{HB}$ và $\vec{BC}$ ngược hướng nên ($\vec{HB}$, $\vec{BC}$) = $180^{\circ}$.
2. TÍCH VÔ HƯỚNG CỦA HAI VECTƠ
Khám phá 2: Một người dùng một lực $\vec{F}$ có cường độ 10N kéo một chiếc xe đi quãng đường dài 100m. Tính công sinh bởi lực $\vec{F}$, biết rằng góc giữa vectơ $\vec{F}$ và hướng di chuyển là $45^{\circ}$. (Công A (đơn vị: J) bằng tích của ba đại lượng: cường độ của lực $\vec{F}$, độ dài quãng đường và côsin của góc giữa hai $\vec{F}$ và độ dịch chuyển $\vec{d}$).
Hướng dẫn giải:
A = |$\vec{F}$|.|$\vec{d}$|.$cos45^{\circ}$ = 10. 100.$cos45^{\circ}$ = $500\sqrt{2}$ (J)
Thực hành 2: Cho tam giác ABC vuông cân tại A, có cạnh huyền bằng $\sqrt{2}$. Tính các tích vô hướng: $\vec{AB}$. $\vec{AC}$, $\vec{AC}$. $\vec{BC}$, $\vec{BA}$. $\vec{BC}$
Hướng dẫn giải:
Tam giác ABC vuông cân tại A có BC = $\sqrt{2}$ $\Rightarrow$ AB = AC = 1
$\vec{AB}$. $\vec{AC}$ = |$\vec{AB}$|. |$\vec{AC}$|.cos($\vec{AB}$, $\vec{AC}$) = 1. 1. cos$90^{\circ}$ = 0
$\vec{AC}$.$\vec{BC}$ = |$\vec{AC}$|. |$\vec{BC}$|. cos($\vec{AC}$, $\vec{BC}$) = 1. $\sqrt{2}$. cos$45^{\circ}$ = 1
$\vec{BA}$.$\vec{BC}$ = |$\vec{BA}$|.|$\vec{BC}$|.cos($\vec{BA}$, $\vec{BC}$) = 1. $\sqrt{2}$. cos$45^{\circ}$ = 1
Thực hành 3: Hai vectơ $\vec{a}$ và $\vec{b}$ có độ dài lần lượt là 3 và 8 và có tích vô hướng là $12\sqrt{2}$. Tính góc giữa hai vectơ $\vec{a}$ và $\vec{b}$.
Hướng dẫn giải:
Ta có: cos($\vec{a}$, $\vec{b)}$ = $\frac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|}$ = $\frac{12\sqrt{2}}{3. 8}$ = $\frac{\sqrt{2}}{2}$
$\Rightarrow$ ($\vec{a}$, $\vec{b}$) = $45^{\circ}$
Vận dụng 1: Một người dùng một lực $\vec{F}$ có độ lớn là 20N kéo một vật dịch chuyển một đoạn 50m cùng hướng với $\vec{F}$. Tính công sinh bởi lực $\vec{F}$.
Hướng dẫn giải:
A = 20. 50. $cos0^{\circ}$ = 1000 (J)
3. TÍNH CHẤT CỦA TÍCH VÔ HƯỚNG
Thực hành 4: Cho hai vectơ $\vec{i}$, $\vec{j}$ vuông góc, cùng có độ dài bằng 1.
a. Tính $(\vec{i} + \vec{j})^{2}$, $(\vec{i} - \vec{j})^{2}$, ($\vec{i}$ + $\vec{j}$).($\vec{i}$ - $\vec{j}$)
b. Cho $\vec{a}$ = 2$\vec{i}$ + 2$\vec{j}$, b = 3$\vec{i}$ - 3$\vec{j}$. Tính tích vô hướng $\vec{a}$.$\vec{b}$ và tính góc ($\vec{a}$, $\vec{b}$)
Hướng dẫn giải:
a. $(\vec{i} + \vec{j})^{2}$ = $\vec{i}^{2}$ + 2$\vec{i}$. $\vec{j}$ + $\vec{j}^{2}$ = $|\vec{i}|^{2}$ + $|\vec{j}|^{2}$ + 2.|$\vec{i}$|. |$\vec{j}$|. cos$90^{\circ}$ = $1^{2}$ + $1^{2}$ + 0 = 2
$(\vec{i} - \vec{j})^{2}$ = $\vec{i}^{2}$ - 2$\vec{i}$. $\vec{j}$ + $\vec{j}^{2}$ = $|\vec{i}|^{2}$ + $|\vec{j}|^{2}$ - 2.|$\vec{i}$|. |$\vec{j}$|. cos$90^{\circ}$ = $1^{2}$ + $1^{2}$ - 0 = 2
($\vec{i}$ + $\vec{j}$).($\vec{i}$ - $\vec{j}$) = $\vec{i}^{2}$ - $\vec{j}^{2}$ = $|\vec{i}|^{2}$ - $|\vec{j}|^{2}$ = $1^{2}$ - $1^{2}$ = 0
b. Ta có: $\vec{a}$. $\vec{b}$ = (2$\vec{i}$ + 2$\vec{j}$)(3$\vec{i}$ - 3$\vec{j}$) = 6($\vec{i}$ + $\vec{j}$)($\vec{i}$ - $\vec{j}$) = 6. 0 = 0
$\Rightarrow$ ($\vec{a}$; $\vec{b}$) = $90^{\circ}$
Vận dụng 2: Phân tử sulfur dioxide ($SO_{2}$) có cấu tạo hình chữ V, góc liên kết $\widehat{OSO}$ gần bằng $120^{\circ}$. Người ta biểu diễn sự phân cực giữa nguyên tử S với mỗi nguyên tử O bằng các vectơ $\vec{\mu_{1}}$ và $\vec{\mu_{2}}$ có cùng phương liên kết công hóa trị, có chiều từ nguyên tử S về mỗi nguyên tử O và có cùng độ dài là 1,6 đơn vị (Hình 6). Cho biết vectơ tổng $\vec{\mu}$ = $\vec{\mu_{1}}$ + $\vec{\mu_{2}}$ được dùng để biểu diễn sự phân cực của cả phân tử $SO_{2}$. Tính độ dài của $\vec{\mu}$.
Hướng dẫn giải:
|$\vec{\mu}$| $\approx \sqrt{1,6^{2} + 1,6^{2} + 2.1,6, 1,6.cos120^{\circ}}$ = 1,6
Bình luận