Giải sbt toán 9 tập 2: bài tập IV.5 trang 64
Bài IV.5: trang 64 sbt Toán 9 tập 2
Cho phương trình: \({x^4} - 13{x^2} + m = 0\). Tìm các giá trị của m để phương trình:
a) Có 4 nghiệm phân biệt
b) Có 3 nghiệm phân biệt
c) Có 2 nghiệm phân biệt
d) Có một nghiệm
e) Vô nghiệm.
Cho phương trình: \({x^4} - 13{x^2} + m = 0\) (1)
Đặt \({x^2} = t \Rightarrow t \ge 0,\) ta có phương trình: \({t^2} - 13t + m = 0\) (2)
\(\Delta = 169 - 4m\)
a) Phương trình (1) có 4 nghiệm phân biệt khi phương trình (2) có hai nghiệm số dương khi
\(\left\{ {\matrix{
{\Delta = 169 - 4m > 0} \cr
{{t_1}{t_2} = m > 0} \cr
{{t_1} + {t_2} = 13 > 0} \cr
} \Leftrightarrow \left\{ {\matrix{
{m < {{169} \over 4}} \cr
{m > 0} \cr} \Leftrightarrow 0 < m < {{169} \over 4}} \right.} \right.\)
b) Phương trình (1) có ba nghiệm phân biệt khi phương trình (2) có 1 nghiệm số dương và 1 nghiệm bằng 0 khi:
\(\left\{ {\matrix{
{\Delta = 169 - 4m > 0} \cr
{{t_1} + {t_2} = 13 > 0} \cr
{{t_1}.{t_2} = m = 0} \cr
} \Leftrightarrow \left\{ {\matrix{
{m < {{169} \over 4}} \cr
{m = 0} \cr} } \right. \Leftrightarrow m = 0} \right.\)
c) Phương trình (1) có hai nghiệm phân biệt khi phương trình (2) có nghiệm kép hoặc có 1 nghiệm dương và một nghiệm âm.
Phương trình (2) có một nghiệm số kép khi và chỉ khi \(\Delta = 169 - 4m = 0\)
\( \Leftrightarrow m = {{169} \over 4} \Rightarrow {t_1} = {t_2} = {{13} \over 2}\)
Phương trình (2) có một nghiệm số dương và một nghiệm số âm khi
\(\left\{ {\matrix{
{\Delta = 169 - 4m > 0} \cr
{{t_1}.{t_2} = m < 0} \cr
} \Leftrightarrow \left\{ {\matrix{
{m < {{169} \over 4}} \cr
{m < 0} \cr} \Leftrightarrow m < 0} \right.} \right.\)
Vậy với \(m = {{169} \over 4}\) hoặc m < 0 thì phương trình (1) có 3 nghiệm phân biệt.
d) Phương trình (1) có một nghiệm khi phương trình (2) có 1 nghiệm số kép bằng 0 hoặc phương trình (2) có một nghiệm bằng 0 và một nghiệm số âm.
Ta thấy phương trình (2) có nghiệm số kép \({t_1} = {t_2} = {{13} \over 2} \ne 0\)
Nếu phương trình (2) có một nghiệm t1 = 0. Theo hệ thức Vi-ét ta có:
\({t_1} + {t_2} = 13 \Rightarrow {t_2} = 13 - {t_1} = 13 - 0 = 13 > 0\)
Vậy không có giá trị nào của m để phương trình (1) chỉ có 1 nghiệm.
e) Phương trình (1) vô nghiệm khi phương trình (2) có 2 nghiệm số âm hoặc vô nghiệm.
Nếu phương trình (2) có 2 nghiệm âm thì theo hệ thức Vi-ét ta có:
\({t_1} + {t_2} = 13 > 0\) vô lý
Vậy phương trình (1) vô nghiệm khi phương trình (2) vô nghiệm.
Suy ra: \(\Delta = 169 - 4m < 0 \Leftrightarrow m > {{169} \over 4}\)
Xem toàn bộ: SBT toán 9 tập 2 bài Ôn tập chương IV Trang 63
Giải những bài tập khác
Giải bài tập những môn khác
Môn học lớp 9 KNTT
5 phút giải toán 9 KNTT
5 phút soạn bài văn 9 KNTT
Văn mẫu 9 kết nối tri thức
5 phút giải KHTN 9 KNTT
5 phút giải lịch sử 9 KNTT
5 phút giải địa lí 9 KNTT
5 phút giải hướng nghiệp 9 KNTT
5 phút giải lắp mạng điện 9 KNTT
5 phút giải trồng trọt 9 KNTT
5 phút giải CN thực phẩm 9 KNTT
5 phút giải tin học 9 KNTT
5 phút giải GDCD 9 KNTT
5 phút giải HĐTN 9 KNTT
Môn học lớp 9 CTST
5 phút giải toán 9 CTST
5 phút soạn bài văn 9 CTST
Văn mẫu 9 chân trời sáng tạo
5 phút giải KHTN 9 CTST
5 phút giải lịch sử 9 CTST
5 phút giải địa lí 9 CTST
5 phút giải hướng nghiệp 9 CTST
5 phút giải lắp mạng điện 9 CTST
5 phút giải cắt may 9 CTST
5 phút giải nông nghiệp 9 CTST
5 phút giải tin học 9 CTST
5 phút giải GDCD 9 CTST
5 phút giải HĐTN 9 bản 1 CTST
5 phút giải HĐTN 9 bản 2 CTST
Môn học lớp 9 cánh diều
5 phút giải toán 9 CD
5 phút soạn bài văn 9 CD
Văn mẫu 9 cánh diều
5 phút giải KHTN 9 CD
5 phút giải lịch sử 9 CD
5 phút giải địa lí 9 CD
5 phút giải hướng nghiệp 9 CD
5 phút giải lắp mạng điện 9 CD
5 phút giải trồng trọt 9 CD
5 phút giải CN thực phẩm 9 CD
5 phút giải tin học 9 CD
5 phút giải GDCD 9 CD
5 phút giải HĐTN 9 CD
Trắc nghiệm 9 Kết nối tri thức
Trắc nghiệm 9 Chân trời sáng tạo
Trắc nghiệm 9 Cánh diều
Tài liệu lớp 9
Văn mẫu lớp 9
Đề thi lên 10 Toán
Đề thi môn Hóa 9
Đề thi môn Địa lớp 9
Đề thi môn vật lí 9
Tập bản đồ địa lí 9
Ôn toán 9 lên 10
Ôn Ngữ văn 9 lên 10
Ôn Tiếng Anh 9 lên 10
Đề thi lên 10 chuyên Toán
Chuyên đề ôn tập Hóa 9
Chuyên đề ôn tập Sử lớp 9
Chuyên đề toán 9
Chuyên đề Địa Lý 9
Phát triển năng lực toán 9 tập 1
Bài tập phát triển năng lực toán 9
Bình luận