Sbt toán 9 tập 2 bài 3: Phương trình bậc hai một ẩn Trang 51

Dưới đây, Tech12h sẽ hướng dẫn cho các bạn cách giải các bài tập trong vở bài tập toán 9 bài: "Phương trình bậc hai một ẩn" trang 51. Hi vọng, thông qua các bài tập sgk và bài tập trong vở bài tập dưới đây sẽ giúp các bạn sẽ nắm bài tốt hơn và làm bài có hiệu quả hơn.

Sbt toán 9 tập 2 bài 3: Phương trình bậc hai một ẩn Trang 51

B. Bài tập và hướng dẫn giải

Bài 15: trang 51 sbt Toán 9 tập 2

Giải các phương trình

a) \(7{x^2} - 5x = 0\)

b) \( - \sqrt 2 {x^2} + 6x = 0\)

c) \(3,4{x^2} + 8,2x = 0\)

d) \( - {2 \over 5}{x^2} - {7 \over 3}x = 0\)

Bài 16: trang 52 sbt Toán 9 tập 2

Giải các phương trình:

a) \(5{x^2} - 20 = 0\)

b) \( - 3{x^2} + 15 = 0\)

c) \(1,2{x^2} - 0,192 = 0\)

d) \(1172,5{x^2} + 42,18 = 0\)

Bài 17: trang 52 sbt Toán 9 tập 2

Giải các phương trình:

a) \({\left( {x - 3} \right)^2} = 4\)

b) \({\left( {{1 \over 2} - x} \right)^2} - 3 = 0\)

c) \({\left( {2x - \sqrt 2 } \right)^2} - 8 = 0\)

d) \({\left( {2,1x - 1,2} \right)^2} - 0,25 = 0\)

Bài 18: trang 52 sbt Toán 9 tập 2

Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số:

a) \({x^2} - 6x + 5 = 0\)

b) \({x^2} - 3x - 7 = 0\)

c) \(3{x^2} - 12x + 1 = 0\)

d) \(3{x^2} - 6x + 5 = 0\)

Bài 19: trang 52 sbt Toán 9 tập 2

Nhận thấy rằng phương trình tích \(\left( {x + 2} \right)\left( {x - 3} \right) = 0,\) hay phương trình bậc hai \({x^2} - x - 6 = 0,\) có hai nghiệm là \({x_1} =  - 2,{x_2} = 3\). Tương tự, hãy lập những phương trình bậc hai mà nghiệm của mỗi phương trình là một trong những cặp số sau:

a) \({x_1} = 2,{x_2} = 5\)

b) \({x_1} =  - {1 \over 2},{x_2} = 3\)

c) \({x_1} = 0,1;{x_2} = 0,2\)

d) \({x_1} = 1 - \sqrt 2 ,{x_2} = 1 + \sqrt 2 \)

Bài tập bổ sung

Bài 3.1: trang 52 sbt Toán 9 tập 2

Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và xác định các hệ số a, b, c:

a) \(4{x^2} + 2x = 5x - 7\)

b) \(5x - 3 + \sqrt 5 {x^2} = 3x - 4 + {x^2}\)

c) \(m{x^2} - 3x + 5 = {x^2} - mx\)

d) \(x + {m^2}{x^2} + m = {x^2} + mx + m + 2\)

Bài 3.2: trang 52 sbt Toán 9 tập 2

Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số:

a) \({x^2} - 3x + 1 = 0\)

b) \({x^2} + \sqrt 2 x - 1 = 0\)

c) \(5{x^2} - 7x + 1 = 0\)

d) \(3{x^2} + 2\sqrt 3 x - 2 = 0\)

Bài 3.3: trang 53 sbt Toán 9 tập 2

Tìm b, c để phương trình \({x^2} + bx + c = 0\) có hai nghiệm là những số dưới đây:

a) \({x_1} =  - 1\) và \({x_2} = 2\)

b) \(x_1 = -5 \)và \(x_2 = 0\)

c) \({x_1} = 1 + \sqrt 2 \) và \({x_2} = 1 - \sqrt 2 \)

d) \(x_1 = 3 \)và \({x_2} =  - {1 \over 2}\)

Bài 3.4: trang 53 sbt Toán 9 tập 2

Tìm a, b, c để phương trình \(a{x^2} + bx + c = 0\) có hai nghiệm là $x_1 = -2 $và $x_2 = 3.$

Có thể tìm được bao nhiêu bộ ba số a, b, c thỏa mãn yêu cầu bài toán?

Bình luận

Giải bài tập những môn khác