Giải bài 17 trang 52 sbt toán 9 tập 2: Phương trình bậc hai một ẩn
Bài 17: trang 52 sbt Toán 9 tập 2
Giải các phương trình:
a) \({\left( {x - 3} \right)^2} = 4\)
b) \({\left( {{1 \over 2} - x} \right)^2} - 3 = 0\)
c) \({\left( {2x - \sqrt 2 } \right)^2} - 8 = 0\)
d) \({\left( {2,1x - 1,2} \right)^2} - 0,25 = 0\)
a) \({\left( {x - 3} \right)^2} = 4 \)
\(\Leftrightarrow {\left( {x - 3} \right)^2} - {2^2} = 0 \)
\(\Leftrightarrow \left[ {\left( {x - 3} \right) + 2} \right]\left[ {\left( {x - 3} \right) - 2} \right] = 0 \)
\(\Leftrightarrow \left( {x - 1} \right)\left( {x - 5} \right) = 0 \)
\(\Leftrightarrow \left[ \matrix{x-1=0 \hfill \cr x-5=0 \hfill \cr} \right.\)
\(\Leftrightarrow \left[ \matrix{x=1 \hfill \cr x=5 \hfill \cr} \right.\)
Vậy phương trình có hai nghiệm: \({x_1} = 1;{x_2} = 5\)
b) \({\left( {{1 \over 2} - x} \right)^2} - 3 = 0 \)
\(\Leftrightarrow \left[ {\left( {{1 \over 2} - x} \right) + \sqrt 3 } \right]\left[ {\left( {{1 \over 2} - x} \right) - \sqrt 3 } \right] = 0 \)
\(\Leftrightarrow \left( {{1 \over 2} + \sqrt 3 - x} \right)\left( {{1 \over 2} - \sqrt 3 - x} \right) = 0\)
\(\Leftrightarrow \left[ \matrix{{1 \over 2} + \sqrt 3 - x = 0 \hfill \cr {1 \over 2} - \sqrt 3 - x = 0 \hfill \cr} \right.\)
\(\Leftrightarrow \left[ \matrix{x = {1 \over 2} + \sqrt 3 \hfill \cr x = {1 \over 2} - \sqrt 3 \hfill \cr} \right.\)
Vậy phương trình có hai nghiệm: \({x_1} = {1 \over 2} + \sqrt 3 ;{x_2} = {1 \over 2} - \sqrt 3 \)
c) \({\left( {2x - \sqrt 2 } \right)^2} - 8 = 0 \)
\(\Leftrightarrow {\left( {2x - \sqrt 2 } \right)^2} - {\left( {2\sqrt 2 } \right)^2} = 0\)
\(\Leftrightarrow \left[ {\left( {2x - \sqrt 2 } \right) + 2\sqrt 2 } \right]\left[ {\left( {2x - \sqrt 2 } \right) - 2\sqrt 2 } \right] = 0 \)
\(\Leftrightarrow \left( {2x + \sqrt 2 } \right)\left( {2x - 3\sqrt 2 } \right) = 0\)
\(\Leftrightarrow \left[ \matrix{2x + \sqrt 2 = 0 \hfill \cr 2x - 3\sqrt 2 = 0 \hfill \cr} \right.\)
\(\Leftrightarrow \left[ \matrix{x = - {{\sqrt 2 } \over 2} \hfill \cr x = {{3\sqrt 2 } \over 2} \hfill \cr} \right.\)
Vậy phương trình có hai nghiệm: \({x_1} = - {{\sqrt 2 } \over 2};{x_2} = {{3\sqrt 2 } \over 2}\)
d) \({\left( {2,1x - 1,2} \right)^2} - 0,25 = 0 \)
\(\Leftrightarrow {\left( {2,1x - 1,2} \right)^2} - {\left( {0,5} \right)^2} = 0\)
\(\Leftrightarrow \left( {2,1x - 1,2 + 0,5} \right)\left( {2,1x - 1,2 - 0,5} \right) = 0 \)
\(\Leftrightarrow \left( {2,1x - 0,7} \right)\left( {2,1x - 1,7} \right) = 0 \)
\(\Leftrightarrow \left[ \matrix{2,1x - 0,7 = 0 \hfill \cr 2,1x - 1,7 = 0 \hfill \cr} \right.\)
\(\Leftrightarrow \left[ \matrix{x = {1 \over 3} \hfill \cr x = {{17} \over {21}} \hfill \cr} \right.\)
Vậy phương trình có hai nghiệm: \({x_1} = {1 \over 3};{x_2} = {{17} \over {21}}\)
Giải những bài tập khác
Giải bài tập những môn khác
Môn học lớp 9 KNTT
5 phút giải toán 9 KNTT
5 phút soạn bài văn 9 KNTT
Văn mẫu 9 kết nối tri thức
5 phút giải KHTN 9 KNTT
5 phút giải lịch sử 9 KNTT
5 phút giải địa lí 9 KNTT
5 phút giải hướng nghiệp 9 KNTT
5 phút giải lắp mạng điện 9 KNTT
5 phút giải trồng trọt 9 KNTT
5 phút giải CN thực phẩm 9 KNTT
5 phút giải tin học 9 KNTT
5 phút giải GDCD 9 KNTT
5 phút giải HĐTN 9 KNTT
Môn học lớp 9 CTST
5 phút giải toán 9 CTST
5 phút soạn bài văn 9 CTST
Văn mẫu 9 chân trời sáng tạo
5 phút giải KHTN 9 CTST
5 phút giải lịch sử 9 CTST
5 phút giải địa lí 9 CTST
5 phút giải hướng nghiệp 9 CTST
5 phút giải lắp mạng điện 9 CTST
5 phút giải cắt may 9 CTST
5 phút giải nông nghiệp 9 CTST
5 phút giải tin học 9 CTST
5 phút giải GDCD 9 CTST
5 phút giải HĐTN 9 bản 1 CTST
5 phút giải HĐTN 9 bản 2 CTST
Môn học lớp 9 cánh diều
5 phút giải toán 9 CD
5 phút soạn bài văn 9 CD
Văn mẫu 9 cánh diều
5 phút giải KHTN 9 CD
5 phút giải lịch sử 9 CD
5 phút giải địa lí 9 CD
5 phút giải hướng nghiệp 9 CD
5 phút giải lắp mạng điện 9 CD
5 phút giải trồng trọt 9 CD
5 phút giải CN thực phẩm 9 CD
5 phút giải tin học 9 CD
5 phút giải GDCD 9 CD
5 phút giải HĐTN 9 CD
Trắc nghiệm 9 Kết nối tri thức
Trắc nghiệm 9 Chân trời sáng tạo
Trắc nghiệm 9 Cánh diều
Tài liệu lớp 9
Văn mẫu lớp 9
Đề thi lên 10 Toán
Đề thi môn Hóa 9
Đề thi môn Địa lớp 9
Đề thi môn vật lí 9
Tập bản đồ địa lí 9
Ôn toán 9 lên 10
Ôn Ngữ văn 9 lên 10
Ôn Tiếng Anh 9 lên 10
Đề thi lên 10 chuyên Toán
Chuyên đề ôn tập Hóa 9
Chuyên đề ôn tập Sử lớp 9
Chuyên đề toán 9
Chuyên đề Địa Lý 9
Phát triển năng lực toán 9 tập 1
Bài tập phát triển năng lực toán 9
Bình luận