Giải bài tập 9.10 trang 90 Toán 8 tập 2 KNTT

Bài tập 9.10 trang 90 Toán 8 tập 2 KNTT. Có hai chiếc cột dựng thẳng đứng trên mặt đất với chiều cao lần lượt là 3m và 2m. Người ta nối hai sợi dây từ đỉnh cột này đến chân cột kia và hai sợi dây cắt nhau tại một điểm (H.9.25), hãy tính độ cao h của điểm đó so với mặt đất


Theo đề bài, ta có hình vẽ: 

- Có AB // CD

=> $\widehat{BAC}=\widehat{DCA}$ (2 góc so le trong)

     $\widehat{BDC}=\widehat{ABD}$ (2 góc so le trong)

- Xét hai tam giác ABE và tam giác CDE, có $\widehat{BAC}=\widehat{DCA}$, $\widehat{BDC}=\widehat{ABD}$

=>  ΔABE ~ ΔCDE

=> $\frac{CD}{AB}=\frac{CE}{AE}=\frac{2}{3}$

=> $\frac{CE}{AE}=\frac{2}{3}$ => $\frac{CE}{CA}=\frac{2}{5}$

- Xét hai tam giác CEF và tam giác CAB có EF // AB

=> ΔCEF ~ ΔCAB (theo định lý)

=> $\frac{FE}{AB}=\frac{CE}{CA}=\frac{2}{5}$

=> $\frac{FE}{AB}=\frac{2}{5}$ => $\frac{FE}{3}=\frac{2}{5}$ => $EF=frac{6}{5}=1,2$ (m)

Vậy độ cao h là 1,2 m

 


Trắc nghiệm Toán 8 kết nối bài 34 Ba trường hợp đồng dạng của hai tam giác

Bình luận

Giải bài tập những môn khác