Giải câu 6 bài hàm số và đồ thị
Bài tập 6. Cho hàm số $y = \frac{1}{x}$. Chứng tỏ hàm số đã cho:
a. Nghịch biến trên khoảng $(0;+\infty)$;
b. Nghịch biến trên khoảng $(-\infty; 0)$.
a. Xét hai số bất kì $x_{1}, x_{2} \in (0;+\infty)$ sao cho $x_{1}<x_{2}$.
Ta có: $x_{1}<x_{2}<0$ nên $ \frac{1}{x_1}> \frac{1}{x_2}$ hay $f\left(x_{1}\right)>f\left(x_{2}\right).$
Vậy hàm số nghịch biến trên khoảng $(0;+\infty)$.
b. Xét hai số bất kì $x_{1}, x_{2} \in (-\infty; 0)$ sao cho $x_{1}<x_{2}$.
Ta có: $x_{1}<x_{2}<0$ nên $ \frac{1}{x_1}> \frac{1}{x_2}$ hay $f\left(x_{1}\right)>f\left(x_{2}\right).$
Vậy hàm số nghịch biến trên khoảng $(-\infty; 0)$.
Xem toàn bộ: Giải bài 1 Hàm số và đồ thị
Bình luận