Giải câu 3 bài 1: Phương pháp quy nạp toán học

Câu 3: Trang 82 - sgk đại số và giải tích 11

Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có các bất đẳng thức:

a) 3n > 3n + 1;                  

b) 2n + 1 > 2n + 3


a) Với n = 2 ta thấy bất đẳng thức đúng

Giả sử bất đẳng thức đúng với n = k ≥ 2, hay  3k > 3k + 1    (*)

Nhân hai vế của (*) với 3, ta được:

3k + 1 > 9k + 3 <=> 3k + 1 > 3k + 4 + 6k -1.

Vì 6k - 1 > 0  =>  3k + 1 > 3k + 4 hay 3k + 1 > 3(k + 1) + 1.

=> bất đẳng thức đúng với n = k + 1.

Vậy 3n > 3n + 1 với mọi số tự nhiên n ≥ 2.

b) Ta thấy với n = 2 thì bất đẳng thức đúng

Giả sử bất đẳng thức đúng với n = k ≥ 2 hay 2k + 1  > 2k + 3                    (**) 

Nhân hai vế của bất đẳng thức (**) với 2, ta được:

                      2k + 2 > 4k + 6 <=> 2k + 2 > 2k +5 + 2k + 1.

Vì 2k + 1> 0 nên 2k + 2 > 2k + 5

Vậy 2n + 1 > 2n + 3 với mọi số tự nhiên n ≥ 2.


Trắc nghiệm đại số và giải tích 11 bài 1: Phương pháp quy nạp toán học
Từ khóa tìm kiếm Google: giải bài tập 3, gợi ý giải câu 3, cách giải câu 3, hướng dẫn làm bài tập 3 Bài 1: Phương pháp quy nạp toán học

Bình luận

Giải bài tập những môn khác