Giải bài tập 3.43 trang 44 SBT toán 10 tập 1 kết nối
Bài tập 3.43. Cho tam giác ABC có $\widehat{B} = 45^{o}$ , $\widehat{C} = 15^{o}$ và b = $\sqrt{2}$. Tính a, $h_{a}$.
Trả lời:
$\frac{a}{sinA} = \frac{b}{sinB}$
$\Rightarrow a = \frac{b}{sinB}.sinA = \frac{\sqrt{2}}{sin45}.sin120 = \sqrt{3}$
Áp dụng công thức tính diện tích tam giác ta có:
$S = \frac{1}{2}ab.sinC = \frac{1}{2}.\sqrt{3}.\sqrt{2}.sin15 = \frac{3-\sqrt{3}}{4}$
$S = \frac{1}{2}a.h_{a}$
$\Rightarrow h_{a} = \frac{2S}{a} = \frac{2.\frac{3-\sqrt{3}}{4}}{\sqrt{3}} = \frac{-1+\sqrt{3}}{2}$
Xem toàn bộ: Giải SBT toán 10 kết nối Bài tập cuối chương III
Từ khóa tìm kiếm Google: giải toán 10 kết nối tập 1, giải sách kết nối 10 môn toán tập 1, giải toán sách mới bài 10 tập 1, Bài tập cuối chương III
Bình luận