Giải bài tập 3.39 trang 43 SBT toán 10 tập 1 kết nối
Bài tập 3.39. Cho $sin15^{o} = \frac{\sqrt{6}-\sqrt{2}}{4}$
a) Tính $sin75^{o}$, $cos105^{o}$, $tan165^{o}$.
b) Tính giá trị của biểu thức
A = $sin75^{o} . cos165^{o} + cos165^{o} . sin165^{o}$
Trả lời:
a) Có $0^{o} < 15^{o} < 90^{o}$ nên cos$15^{o}$ > 0
Lại có $sin^{2}15^{o} + cos^{2}15^{o} = 1$
$\Rightarrow$ $cos^{2}15^{o}$ = 1 - $sin^{2}15^{o}$= 1 - $(\frac{\sqrt{6}-\sqrt{2}}{4})^{2}$ = $\frac{2+\sqrt{3}}{4}$
$\Rightarrow cos15^{o} = \frac{\sqrt{6}-\sqrt{2}}{4}$
Áp dụng công thức:
$tan15^{o} = \frac{sin15^{o}}{cos15^{o}} = \frac{\frac{\sqrt{6}-\sqrt{2}}{4}}{\frac{\sqrt{6}+\sqrt{2}}{4}} = \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}} = \frac{(\sqrt{6}-\sqrt{2}^{})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})} = \frac{8-4\sqrt{3}}{4} = 2-\sqrt{3}$
Có $sin75^{o}$ = $sin(90^{o}-15^{o}) = cos15^{o} = \frac{\sqrt{6}+\sqrt{2}}{4}$
$cos105^{o} = cos(180^{o} - 75^{o}) = -cos75^{o} = -cos(90^{o}-15^{o}) = -sin15^{o}$
Như vậy $cos105^{o} = -\frac{\sqrt{6}-\sqrt{2}}{4}$
$tan165^{o} = tan(180^{o} - 15^{o} = -tan15^{o}$
Như vậy $tan165^{o} = -2+\sqrt{3}$
b) Có $sin165^{o} = sin(180^{o} - 15^{o}) = sin15^{o} = \frac{\sqrt{6}-\sqrt{2}}{4}$
$cos165^{o} = cos(180^{o} - 15^{o}) = -cos15^{o} = -\frac{\sqrt{6}+\sqrt{2}}{4}$
Áp dụng vào A = $sin75^{o} . cos165^{o} + cos165^{o} . sin165^{o}$
A = $\frac{\sqrt{6}+\sqrt{2}}{4}.(-\frac{\sqrt{6}+\sqrt{2}}{4})+\frac{\sqrt{2}-\sqrt{6}}{4}.\frac{\sqrt{6}-\sqrt{2}}{4}$
A = -1
Xem toàn bộ: Giải SBT toán 10 kết nối Bài tập cuối chương III
Bình luận