Giải bài 14 bài ôn tập cuối năm
Bài tập 14. Cho hình vuông ABCD có cạnh bằng a. Gọi M, N tương ứng là trung điểm của các cạnh AB, BC.
a. Biểu thị các vecto $\overrightarrow{DM}, \overrightarrow{AN}$ theo các vecto $\overrightarrow{AB}, \overrightarrow{AD}$.
b. Tính $\overrightarrow{DM}.\overrightarrow{AN}$ và tìm góc giữa hai đường thẳng DM và AN.
a. Ta có:
$\overrightarrow{DM}= \overrightarrow{DA}+\overrightarrow{AM}=-\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB}$
$\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}$
b.
$\overrightarrow{DM}.\overrightarrow{AN}$ = $(-\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB}).(\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD})$
= $\frac{-1}{2}\overrightarrow{AD}^{2}-\frac{3}{4}\overrightarrow{AD}.\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AB}^{2}$
mà AB, AD vuông góc với nhau nên $\overrightarrow{AB}.\overrightarrow{AD}=0$
$\Rightarrow$ $\overrightarrow{DM}.\overrightarrow{AN}$ = $\frac{-1}{2}\overrightarrow{AD}^{2}-\frac{3}{4}\overrightarrow{AD}.\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AB}^{2} = \frac{-1}{2}AD^{2}+\frac{1}{2}AB^{2} = 0$
- Do $\overrightarrow{DM}.\overrightarrow{AN}$ = 0 nên đường thẳng DM vuông với đường thẳng AN, hay góc giữa đường thẳng DM và AN là 90o.
Xem toàn bộ: Giải bài tập ôn tập cuối năm
Bình luận