Giải câu 1 bài 4: Cấp số nhân

Câu 1: trang 103 sgk toán Đại số và giải tích 11

Chứng minh các dãy số \left ( \frac{3}{5} . 2^n \right )\left (\frac{5}{2^{n}} \right )\left ( \left ( -\frac{1}{2} \right )^{n} \right ) là các cấp số nhân.


Để chứng minh dãy (u_{n})là cấp số nhân thì ta chứng minh u_{n+1}=u_{n}.q

Với q là công bội của cấp số nhân.

  • Với mọi ∀n\in {\mathbb N}^*

Ta có  \frac{u_{n+1}}{u_{n}}= ( \frac{3}{5} . 2^{n+1}) : (\frac{3}{5}. 2^n) =( \frac{3}{5} . 2^{n}.2) : (\frac{3}{5}. 2^n)= 2.

\Rightarrow u_{n+1}= u_n.2; n\in {\mathbb N}^*

\Rightarrow u_{1}=\frac{3}{5}.2^{1}=\frac{6}{5}

Vậy dãy số đã cho là một cấp số nhân với u_1= \frac{6}{5}, q = 2

  • Với mọi ∀ n\in {\mathbb N}^*

Ta có u_{n+1}= \frac{5}{2^{n+1}}=\frac{5}{2^{n}}.\frac{1}{2}= u_n.\frac{1}{2}

\Rightarrow u_{1}=\frac{5}{2^{1}}=\frac{5}{2}

Vậy dãy số đã cho là một cấp số nhân với u_1= \frac{5}{2},q= \frac{1}{2}

  • Với mọi ∀ n\in {\mathbb N}^*

Ta có u_{n+1}= (-\frac{1}{2})^{n+1}=(-\frac{1}{2})^{n}.(-\frac{1}{2})=u_{n}.\frac{-1}{2}.

\Rightarrow u_{1}=\left ( -\frac{1}{2} \right )^{1}=\frac{-1}{2}

Vậy dãy số đã cho là cấp số nhân với u_1= \frac{-1}{2},q= \frac{-1}{2}.


Trắc nghiệm đại số và giải tích 11 bài 4: Cấp số nhân (P2)
Từ khóa tìm kiếm Google: Giải câu 1 trang 103 sgk toán đại số và giải tích 11, giải bài tập 1 trang 103 toán đại số và giải tích 11, toán đại số và giải tích 11 câu 1 trang 103, câu 1 bài 4 cấp số nhân sgk toán đại số và giải tích 11

Bình luận

Giải bài tập những môn khác