Giải bài tập 9.27 trang 103 Toán 8 tập 2 KNTT

Bài tập 9.27 trang 103 Toán 8 tập 2 KNTT. Cho tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k. Gọi A'H' và AH lần lượt là các đường cao đỉnh A' và A của tam giác A'B'C' và tam giác ABC. Chứng minh rằng:

a)$\frac{A'H'}{AH}=k$

b) Diện tích tam giác A'B'C' bằng $k^{2}$ lần diện tích tam giác ABC


a) Vì $\Delta A'B'C'$ ~ $\Delta ABC$ 

=> $\widehat{B}=\widehat{B'}$; $\frac{A'B'}{AB}=\frac{A'C'}{AC}=\frac{B'C'}{BC}=k$

Xét hai tam giác vuông A'H'B' (vuông tại H') và tam giác vuông AHB (vuông tại H), có: 

$\widehat{B}=\widehat{B'}$

=> $\Delta A'H'B'$ ~ $\Delta AHB$ 

=> $\frac{A'H'}{AH}=\frac{A'B'}{AB}$

mà $\frac{A'B'}{AB}=k$

=>  $\frac{A'H'}{AH}=k$

b) Có diện tích tam giác ABC là: $\frac{1}{2}AH.BC$

   Có diện tích tam giác A'B'C' là $\frac{1}{2}A'H'.B'C'$

Xét tỉ lệ giữa hai tam giác A'B'C' và tam giác ABC có: $\frac{\frac{1}{2}A'H'.B'C'}{\frac{1}{2}AH.BC}=\frac{A'H'}{AH}\cdot \frac{B'C'}{BC}=k.k=k^{2}$

 


Trắc nghiệm Toán 8 kết nối bài 36 Các trường hợp đồng dạng của hai tam giác vuông

Bình luận

Giải bài tập những môn khác