Giải bài tập 17 trang 73 SBT toán 10 tập 2 kết nối

17. Khi tham gia một trò chơi quay số trúng thưởng, mỗi người chơi chọn một số 4 chữ số (có tính cả số 0 ở đầu). Bạn An chọn số 0347. Người quản trò quay 4 tấm bìa cứng hình tròn I, II, III, IV, mỗi tấm bìa được chia thành 10 phần có diện tích bằng nhau và đánh số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 được gắn vào trục quay có mũi tên ở tâm. Giả sử mũi tên của bìa cứng số I, II, III và IV tương ứng dừng ở các số a, b, c, d. Khi đó số $\overline{abcd}$  gọi là số trúng thưởng. Nếu số của người chơi trùng hoàn toàn với số trúng thưởng thì người chơi trúng giải nhất; trùng với 3 chữ số của số trúng thưởng (tính cả thứ tự) thì người chơi trúng giải nhì.

Tính xác suất bạn An trúng giải nhất, giải nhì.


Không gian mẫu: Ω = { $\overline{abcd}$; a, b, c, d ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}}.

Theo quy tắc nhân, ta có n(Ω) = 10$^{4}$. (Do có 10 cách chọn mỗi số a, b, c, d).

+) Gọi E là biến cố “An trúng giải nhất”. Khi đó E = {0347}, n(E) = 1.

Vậy xác suất để An trúng giải nhất là P(E) = $\frac{n(E)}{n(\Omega )}=\frac{1}{10^{4}}$.

+) Gọi F là biến cố “An trúng giải nhì”.

Khi đó, F = { $\overline{a347};\overline{0b47};\overline{03c7};\overline{034d}$| a ∈ {1; 2; 3; 4; 5; 6; 7; 8; 9}, b ∈ {0; 1; 2; 4; 5; 6; 7; 8; 9}, c ∈ {0; 1; 2; 3; 5; 6; 7; 8; 9}, d ∈ {0; 1; 2; 3; 4; 5; 6; 8; 9}}.

Mỗi cách chọn a, b, c, d thỏa mãn F là chọn 1 trong 9 số. Có 9 cách chọn a, 9 cách chọn b, 9 cách chọn c, 9 cách chọn d.

Mỗi trường hợp là rời nhau nên theo quy tắc cộng ta có n(F) = 9 + 9 + 9 + 9 = 36.

Vậy xác suất để An trúng giải nhì là P(F) = $\frac{n(F)}{n(\Omega )}=\frac{36}{10^{4}}=0.0036$ .


Bình luận

Giải bài tập những môn khác