Lý thuyết trọng tâm Toán 12 cánh diều Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Tổng hợp kiến thức trọng tâm Toán 12 cánh diều Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số. Tài liệu nhằm củng cố, ôn tập lại nội dung kiến thức bài học cho học sinh dễ nhớ, dễ ôn luyện. Kéo xuống để tham khảo
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
BÀI 4: KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
A. MỤC TIÊU CẦN ĐẠT CỦA BÀI HỌC
Mô tả sơ đồ tổng quát để khảo sát hàm số (tìm tập xác định, xét chiều biến thiên, tìm cực trị, tìm tiệm cận, lập bảng biến thiên, vẽ đồ thị).
- Khảo sát tập xác định, chiều biến thiên, cực trị, tiệm cận, bảng biến thiên và vẽ đồ thị của các hàm số: hàm bậc ba, hàm phân thức hữu tỉ đơn giản.
- Nhận biết tính đối xứng (trục đối xứng, tâm đối xứng) của đồ thị các hàm số trên.
- Vận dụng đạo hàm và khảo sát hàm số để giải quyết một số vấn đề liên quan đến thực tiễn.
B. NHỮNG NỘI DUNG CẦN GHI NHỚ TRONG BÀI HỌC
I. SƠ ĐỒ KHẢO SÁT HÀM SỐ
Buớc 1. Tìm tập xác định của hàm số.
Bước 2. Xét sự biến thiên của hàm số
- Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm tiệm cận (nếu có).
- Tính đạo hàm và tìm các điểm mà tại đó đạo hàm bằng 0. Lập bảng biến thiên; xác định chiều biến thiên, cực trị của hàm số (nếu có).
Bước 3. Vẽ đồ thị hàm số
- Vẽ các đường tiệm cận (nếu có).
- Xác định các điểm đặc biệt của đồ thị: cực trị, giao điểm của đồ thị với các trục toạ độ (trong trường hợp đơn giản), ...
- Nhận xét về đặc điểm của đồ thị: chỉ ra tâm đối xứng, trục đối xứng (nếu có).
II. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ BẬC BA
Sử dụng sơ đồ khảo sát hàm số, ta có thể khảo sát sự biến thiên và vẽ đồ thị của hàm số bậc ba.
III. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ CỦA MỘT SỐ HÀM PHÂN THỨC HỮU TỈ
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số y =
Sử dụng sơ đồ khảo sát hàm số, ta có thể khảo sát sự biến thiên và vẽ đồ thị của hà số y = .
Nhận xét: Trong trường hợp tổng quát, đồ thị của hàm số y = nhận giao điểm I
của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
2. Khảo sát sự biến thiên và vẽ đồ thị hàm số y = (
Sử dụng sơ đồ khảo sát hàm số, ta có thể khảo sát sự biến thiên và vẽ đồ thị hàm số y = (
.
Nhận xét:
Trong trường hợp tổng quát, đồ thị của hàm số y = (
nhận giao điểm I của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
IV. ỨNG DỤNG ĐẠO HÀM VÀ KHẢO SÁT HÀM SỐ ĐỂ GIẢI QUYẾT MỘT SỐ VẤN ĐỀ LIÊN QUAN ĐẾN THỰC TIỄN
Đạo hàm là một khái niệm toán học xuất phát từ nhiều vấn đề khoa học, kỹ thuật và công nghệ. Vì thế, đạo hàm và khảo sát hàm số là một công cụ quan trọng để giải quyết một số bài toán trong thực tiễn.
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
Nội dung quan tâm khác
Thêm kiến thức môn học
Tóm tắt kiến thức Toán 12 CD Bài 4: Khảo sát sự biến thiên và, kiến thức trọng tâm Toán 12 cánh diều Bài 4: Khảo sát sự biến thiên và, Ôn tập Toán 12 cánh diều Bài 4: Khảo sát sự biến thiên và
Giải bài tập những môn khác
Môn học lớp 12 KNTT
5 phút giải toán 12 KNTT
5 phút soạn bài văn 12 KNTT
Văn mẫu 12 KNTT
5 phút giải vật lí 12 KNTT
5 phút giải hoá học 12 KNTT
5 phút giải sinh học 12 KNTT
5 phút giải KTPL 12 KNTT
5 phút giải lịch sử 12 KNTT
5 phút giải địa lí 12 KNTT
5 phút giải CN lâm nghiệp 12 KNTT
5 phút giải CN điện - điện tử 12 KNTT
5 phút giải THUD12 KNTT
5 phút giải KHMT12 KNTT
5 phút giải HĐTN 12 KNTT
5 phút giải ANQP 12 KNTT
Môn học lớp 12 CTST
5 phút giải toán 12 CTST
5 phút soạn bài văn 12 CTST
Văn mẫu 12 CTST
5 phút giải vật lí 12 CTST
5 phút giải hoá học 12 CTST
5 phút giải sinh học 12 CTST
5 phút giải KTPL 12 CTST
5 phút giải lịch sử 12 CTST
5 phút giải địa lí 12 CTST
5 phút giải THUD 12 CTST
5 phút giải KHMT 12 CTST
5 phút giải HĐTN 12 bản 1 CTST
5 phút giải HĐTN 12 bản 2 CTST
Môn học lớp 12 cánh diều
5 phút giải toán 12 CD
5 phút soạn bài văn 12 CD
Văn mẫu 12 CD
5 phút giải vật lí 12 CD
5 phút giải hoá học 12 CD
5 phút giải sinh học 12 CD
5 phút giải KTPL 12 CD
5 phút giải lịch sử 12 CD
5 phút giải địa lí 12 CD
5 phút giải CN lâm nghiệp 12 CD
5 phút giải CN điện - điện tử 12 CD
5 phút giải THUD 12 CD
5 phút giải KHMT 12 CD
5 phút giải HĐTN 12 CD
5 phút giải ANQP 12 CD
Giải chuyên đề học tập lớp 12 kết nối tri thức
Giải chuyên đề Ngữ văn 12 Kết nối tri thức
Giải chuyên đề Toán 12 Kết nối tri thức
Giải chuyên đề Vật lí 12 Kết nối tri thức
Giải chuyên đề Hóa học 12 Kết nối tri thức
Giải chuyên đề Sinh học 12 Kết nối tri thức
Giải chuyên đề Kinh tế pháp luật 12 Kết nối tri thức
Giải chuyên đề Lịch sử 12 Kết nối tri thức
Giải chuyên đề Địa lí 12 Kết nối tri thức
Giải chuyên đề Tin học ứng dụng 12 Kết nối tri thức
Giải chuyên đề Khoa học máy tính 12 Kết nối tri thức
Giải chuyên đề Công nghệ 12 Điện - điện tử Kết nối tri thức
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Kết nối tri thức
Giải chuyên đề học tập lớp 12 chân trời sáng tạo
Giải chuyên đề Ngữ văn 12 Chân trời sáng tạo
Giải chuyên đề Toán 12 Chân trời sáng tạo
Giải chuyên đề Vật lí 12 Chân trời sáng tạo
Giải chuyên đề Hóa học 12 Chân trời sáng tạo
Giải chuyên đề Sinh học 12 Chân trời sáng tạo
Giải chuyên đề Kinh tế pháp luật 12 Chân trời sáng tạo
Giải chuyên đề Lịch sử 12 Chân trời sáng tạo
Giải chuyên đề Địa lí 12 Chân trời sáng tạo
Giải chuyên đề Tin học ứng dụng 12 Chân trời sáng tạo
Giải chuyên đề Khoa học máy tính 12 Chân trời sáng tạo
Giải chuyên đề Công nghệ 12 Điện - điện tử Chân trời sáng tạo
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Chân trời sáng tạo
Giải chuyên đề học tập lớp 12 cánh diều
Giải chuyên đề Ngữ văn 12 Cánh diều
Giải chuyên đề Toán 12 Cánh diều
Giải chuyên đề Vật lí 12 Cánh diều
Giải chuyên đề Hóa học 12 Cánh diều
Giải chuyên đề Sinh học 12 Cánh diều
Giải chuyên đề Kinh tế pháp luật 12 Cánh diều
Giải chuyên đề Lịch sử 12 Cánh diều
Giải chuyên đề Địa lí 12 Cánh diều
Giải chuyên đề Tin học ứng dụng 12 Cánh diều
Giải chuyên đề Khoa học máy tính 12 Cánh diều
Giải chuyên đề Công nghệ 12 Điện - điện tử Cánh diều
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Cánh diều
Bình luận