Lý thuyết trọng tâm Toán 12 cánh diều Bài 3: Đường tiệm cận của đồ thị hàm số
Tổng hợp kiến thức trọng tâm Toán 12 cánh diều Bài 3: Đường tiệm cận của đồ thị hàm số. Tài liệu nhằm củng cố, ôn tập lại nội dung kiến thức bài học cho học sinh dễ nhớ, dễ ôn luyện. Kéo xuống để tham khảo
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
CHƯƠNG 1
BÀI 3: ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ
A. MỤC TIÊU CẦN ĐẠT CỦA BÀI HỌC
- Nhận biết hình ảnh hình học của đường tiệm cận ngang, đường tiệm cận đứng, đường tiệm cận xiên của đồ thị hàm số.
- Xác định được các đường tiệm cận (nếu có) của đồ thị hàm số đơn giản.
B. NHỮNG NỘI DUNG CẦN GHI NHỚ TRONG BÀI HỌC
I. ĐƯỜNG TIỆM CẬN NGANG
Đường thẳng được gọi là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số
nếu:
hoặc
.
Nhận xét:
Giả sử đường thẳng là tiệm cận ngang của đồ thị hàm số
. Lấy điểm M (x, y) thuộc đồ thị hàm số. Gọi MH là khoảng cách từ điểm M đến đường thẳng
. Khi đó, độ dài MH tiến tới 0 khi
(Hình 11a) hay
(Hình 11b)
II. ĐƯỜNG TIỆM CẬN ĐỨNG
Đường thẳng được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số
nếu ít nhất một trong các điều kiện sau được thoả mãn:
Nhận xét:
Giả sử đường thẳng là tiệm cận đứng của đồ thị hàm số y = f(x). Lấy điểm M (x, y) thuộc đồ thị hàm số. Gọi MH là khoảng cách từ điểm M đến đường thẳng
. Khi đó, độ dài MH tiến tới 0 khi
(Hình 13b, d) hay
(hình 13a, c).
III. ĐƯỜNG TIỆM CẬN XIÊN
Đường thẳng được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số
nếu:
Nhận xét:
Giả sử đường thẳng y = ax + b (a 0) là tiệm cận xiên của đồ thị hàm số y = f (x). Lấy điểm M thuộc đồ thị hàm số y = f(x) và điểm N thuộc đường thẳng y = ax + b có cùng hoành độ x. Khi đó, độ dài MN tiến tới 0 khi x -> +
(hình 16a) hay x -> -
(hình 16b).
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
Nội dung quan tâm khác
Thêm kiến thức môn học
Tóm tắt kiến thức Toán 12 CD Bài 3: Đường tiệm cận của đồ thị, kiến thức trọng tâm Toán 12 cánh diều Bài 3: Đường tiệm cận của đồ thị, Ôn tập Toán 12 cánh diều Bài 3: Đường tiệm cận của đồ thị
Giải bài tập những môn khác
Môn học lớp 12 KNTT
5 phút giải toán 12 KNTT
5 phút soạn bài văn 12 KNTT
Văn mẫu 12 KNTT
5 phút giải vật lí 12 KNTT
5 phút giải hoá học 12 KNTT
5 phút giải sinh học 12 KNTT
5 phút giải KTPL 12 KNTT
5 phút giải lịch sử 12 KNTT
5 phút giải địa lí 12 KNTT
5 phút giải CN lâm nghiệp 12 KNTT
5 phút giải CN điện - điện tử 12 KNTT
5 phút giải THUD12 KNTT
5 phút giải KHMT12 KNTT
5 phút giải HĐTN 12 KNTT
5 phút giải ANQP 12 KNTT
Môn học lớp 12 CTST
5 phút giải toán 12 CTST
5 phút soạn bài văn 12 CTST
Văn mẫu 12 CTST
5 phút giải vật lí 12 CTST
5 phút giải hoá học 12 CTST
5 phút giải sinh học 12 CTST
5 phút giải KTPL 12 CTST
5 phút giải lịch sử 12 CTST
5 phút giải địa lí 12 CTST
5 phút giải THUD 12 CTST
5 phút giải KHMT 12 CTST
5 phút giải HĐTN 12 bản 1 CTST
5 phút giải HĐTN 12 bản 2 CTST
Môn học lớp 12 cánh diều
5 phút giải toán 12 CD
5 phút soạn bài văn 12 CD
Văn mẫu 12 CD
5 phút giải vật lí 12 CD
5 phút giải hoá học 12 CD
5 phút giải sinh học 12 CD
5 phút giải KTPL 12 CD
5 phút giải lịch sử 12 CD
5 phút giải địa lí 12 CD
5 phút giải CN lâm nghiệp 12 CD
5 phút giải CN điện - điện tử 12 CD
5 phút giải THUD 12 CD
5 phút giải KHMT 12 CD
5 phút giải HĐTN 12 CD
5 phút giải ANQP 12 CD
Giải chuyên đề học tập lớp 12 kết nối tri thức
Giải chuyên đề Ngữ văn 12 Kết nối tri thức
Giải chuyên đề Toán 12 Kết nối tri thức
Giải chuyên đề Vật lí 12 Kết nối tri thức
Giải chuyên đề Hóa học 12 Kết nối tri thức
Giải chuyên đề Sinh học 12 Kết nối tri thức
Giải chuyên đề Kinh tế pháp luật 12 Kết nối tri thức
Giải chuyên đề Lịch sử 12 Kết nối tri thức
Giải chuyên đề Địa lí 12 Kết nối tri thức
Giải chuyên đề Tin học ứng dụng 12 Kết nối tri thức
Giải chuyên đề Khoa học máy tính 12 Kết nối tri thức
Giải chuyên đề Công nghệ 12 Điện - điện tử Kết nối tri thức
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Kết nối tri thức
Giải chuyên đề học tập lớp 12 chân trời sáng tạo
Giải chuyên đề Ngữ văn 12 Chân trời sáng tạo
Giải chuyên đề Toán 12 Chân trời sáng tạo
Giải chuyên đề Vật lí 12 Chân trời sáng tạo
Giải chuyên đề Hóa học 12 Chân trời sáng tạo
Giải chuyên đề Sinh học 12 Chân trời sáng tạo
Giải chuyên đề Kinh tế pháp luật 12 Chân trời sáng tạo
Giải chuyên đề Lịch sử 12 Chân trời sáng tạo
Giải chuyên đề Địa lí 12 Chân trời sáng tạo
Giải chuyên đề Tin học ứng dụng 12 Chân trời sáng tạo
Giải chuyên đề Khoa học máy tính 12 Chân trời sáng tạo
Giải chuyên đề Công nghệ 12 Điện - điện tử Chân trời sáng tạo
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Chân trời sáng tạo
Giải chuyên đề học tập lớp 12 cánh diều
Giải chuyên đề Ngữ văn 12 Cánh diều
Giải chuyên đề Toán 12 Cánh diều
Giải chuyên đề Vật lí 12 Cánh diều
Giải chuyên đề Hóa học 12 Cánh diều
Giải chuyên đề Sinh học 12 Cánh diều
Giải chuyên đề Kinh tế pháp luật 12 Cánh diều
Giải chuyên đề Lịch sử 12 Cánh diều
Giải chuyên đề Địa lí 12 Cánh diều
Giải chuyên đề Tin học ứng dụng 12 Cánh diều
Giải chuyên đề Khoa học máy tính 12 Cánh diều
Giải chuyên đề Công nghệ 12 Điện - điện tử Cánh diều
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Cánh diều
Bình luận