Một hộp có 60 chiếc thẻ cùng loại, mỗi thể được ghi 1 trong các số 1, 2 , 3, ..., 59, 60; hai thẻ khác nhau thì ghi hai số khác nhau.
Bài 23. Một hộp có 60 chiếc thẻ cùng loại, mỗi thể được ghi 1 trong các số 1, 2 , 3, ..., 59, 60; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. Tìm số phần tử tập hợp C gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:
a) "Số xuất hiện trên thẻ được rút ra là số có hai chữ số lớn hơn 25";
b) "Số xuất hiện trên thẻ được rút ra là số chia hết cho 7".
c) "Số xuất hiện trên thẻ được rút ra là số chia hết cho cả 3 và 5".
d) "Số xuất hiện trên thẻ được rút ra là số có chữ số hàng chục gấp 2 lần chữ số hàng đơn vị".
Ta có: C = {1;2;3;...;59;60}
Tập hợp C có 60 phần tử.
a) Có 35 kết quả thuận lợi cho biến cố "Số xuất hiện trên thẻ được rút ra là số có hai chữ số lớn hơn 25" là: 26, 27, 28, ..., 59, 60.
Vì thế, xác suất của biến cố đó là $\frac{35}{60}=\frac{7}{12}$
b) Có 8 kết quả thuận lợi cho biến cố "Số xuất hiện trên thẻ được rút ra là số chia hết cho 7" là: 7, 14, 21, 28, 35, 42, 49, 56.
Vì thế, xác suất của biến cố đó là $\frac{8}{60}=\frac{2}{15}$
c) Có 4 kết quả thuận lợi cho biến cố "Số xuất hiện trên thẻ được rút ra là số chia hết cho cả 3 và 5" là: 15, 30, 45, 60.
Vì thế, xác suất của biến cố đó là $\frac{4}{60}=\frac{1}{15}$
d) Có 2 kết quả thuận lợi cho biến cố "Số xuất hiện trên thẻ được rút ra là số có chữ số hàng chục gấp 2 lần chữ số hàng đơn vị" là: 21, 42.
Vì thế, xác suất của biến cố đó là $\frac{2}{60}=\frac{1}{30}$
Bình luận