Giải câu 7 bài: Phương trình đường thẳng trong không gian

Câu 7: Trang 91 - sgk hình học 12

Cho điểm A(1 ; 0 ; 0) và đường thẳng ∆: \left\{\begin{matrix}x=2+t &  & \\y=1+2t  &  & \\ z=t &  & \end{matrix}\right. 

a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng ∆.

b) Tìm tọa độ điểm A' đối xứng với A qua đường thẳng ∆.


Giả sử H(2+t;1+2t;t)\in \Delta

=> \overrightarrow{AH}=(1+t;1+2t;t)

Ta có: \overrightarrow{u_{\Delta}}=(1;2;1)

Theo bài ra: H là hình chiếu vuông góc của điểm A trên đường thẳng ∆ 

=> AH\perp \Delta <=> \overrightarrow{AH}.\overrightarrow{u_{\Delta }}=0

<=> 1+t+2(1+2t)+t=0

<=> t=\frac{-1}{2}

=> H(\frac{3}{2};0;-\frac{1}{2})

b) Theo bài ra: A' đối xứng với A qua đường thẳng ∆

=> H là trung điểm AA'.

=> \left\{\begin{matrix}x_{A'}=2x_{H}-x_{A}=2 &  & \\ y_{A'}=2y_{H}-y_{A}=0 &  & \\ z_{A'}=2z_{H}-z_{A}=-1 &  & \end{matrix}\right.

=> A'(2;0;-1)

Vậy A'(2;0;-1).


Trắc nghiệm hình học 12 bài 3: Phương trình đường thẳng trong không gian
Từ khóa tìm kiếm Google: Lời giải câu 7 bài Phương trình đường thẳng trong không gian, Cách giải câu 7 bài Phương trình đường thẳng trong không gian, hướng dẫn giải câu 7 bài Phương trình đường thẳng trong không gian, Gợi ý giải câu 7 bài Phương trình đường thẳng trong không gian - hình học 12

Bình luận

Giải bài tập những môn khác