Giải bài tập 7.52 trang 49 SBT toán 10 tập 2 kết nối
7.52. Cho đường thẳng d: x – y + 3 = 0. Phương trình đường thẳng song song với d và cách d một khoảng là $\sqrt{2}$ là
A. x + y + 1 = 0 và x + y + 3 = 0;
B. x – y – 1 = 0;
C. x – y + 3 = 0;
D. x – y + 3 = 0 và x – y – 1 = 0.
Phương trình đường thẳng song song với d có dạng là: d’: x – y + c = 0 với c ≠ 3
Chọn điểm A(1; 4) thuộc đường thẳng d
Do d’ // d và d’ cách d một khoảng là $\sqrt{2}$ nên ta có:
d(A, d’) = $\sqrt{2}$
<=> $\frac{|1-4+c|}{\sqrt{1^{2}+(-1)^{2}}}=\sqrt{2}$
⇔ |c – 3| = 2 (*)
TH1: c – 3 ≥ 0 hay c ≥ 3
(*) ⇔ c – 3 = 2 ⇔ c = 5 (thỏa mãn)
TH2: c – 3 < 0 hay c < 3
(*) ⇔ –c + 3 = 2 ⇔ c = 1 (thỏa mãn)
Với c = 5 ta có, d’: x – y + 5 = 0.
Với c = 1 ta có, d’: x – y + 1 = 0.
Đáp án: không có đáp án đúng.
Xem toàn bộ: Giải SBT toán 10 Kết nối Bài tập cuối chương VII
Bình luận