Giải bài tập 4.25 trang 63 SBT toán 11 tập 1 kết nối

Bài tập 4.25 trang 63 SBT toán 11 tập 1 kết nối: Cho hình chóp tứ giác S.ABCD và E là một điểm bất kì thuộc cạnh SA. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng SB, SD. Gọi M, N lần lượt là giao điểm của (P) và các cạnh AB, AD.

a) Chứng minh rằng EM//SB và EN//SD.

b) Giả sử đường thẳng MN cắt các đường thẳng BC, CD. Xác định giao tuyến của mặt phẳng (P) và các mặt phẳng (SBC), (SCD)


a) Mặt phẳng (SAB) chứa đường thẳng SB song song với mặt phẳng (P) nên giao tuyến của hai mặt phẳng đó song song với SB, suy ra EM//SB.

Mặt phẳng (SAD) có đường thẳng SD song song với mặt phẳng (P) nên giao tuyến của hai mặt phẳng đó song song với SD, suy ra EN//SD

b) Gọi F, G lần lượt là giao điểm của đường thẳng MN và hai đường thẳng BC, CD. Trong mặt phẳng (SBC), vẽ đường thẳng qua F song song với SB thì đường thẳng đó là giao tuyến của mặt phẳng (P) và mặt phẳng (SBC).

Trong mặt phẳng (SCD), vẽ đường thẳng qua G và song song với SD thì đường thẳng đó là giao tuyến của mặt phẳng (P) và mặt phẳng (SCD).


Bình luận

Giải bài tập những môn khác