Giải bài 31 trang 56 sbt toán 9 tập 2: Công thức nghiệm thu gọn

Bài 31: trang 56 sbt Toán 9 tập 2

Với giá trị nào của x thì giá trị của hai hàm số bằng nhau:

a) \(y = {1 \over 3}{x^2}\)và \(y = 2x - 3\)

b) \(y =  - {1 \over 2}{x^2}\)và \(y = x - 8\)?


a)     \({1 \over 3}{x^2} = 2x - 3 \)

\(\Leftrightarrow {x^2} - 6x + 9 = 0\)

\(\Delta ' = {\left( { - 3} \right)^2} - 1.9 = 9 - 9 = 0\)

Phương trình có nghiệm kép: \({x_1} = {x_2} = 3\)

Vậy với $x = 3 $thì giá trị của hai hàm số đã cho bằng nhau.

b)     \( - {1 \over 2}{x^2} = x - 8 \)

\(\Leftrightarrow {x^2} + 2x - 16 = 0\)

\(\Delta ' = {1^2} - 1.\left( { - 16} \right) = 1 + 16 = 17 > 0 \)

\(\Rightarrow \sqrt {\Delta '} = \sqrt {17} \)

    • \({x_1} = {{ - 1 + \sqrt {17} } \over 1} = - 1 + \sqrt {17} \)
    • \({x_2} = {{ - 1 - \sqrt {17} } \over 1} = - 1 - \sqrt {17} \)

Vậy với \(x = \sqrt {17}  - 1\)hoặc \(x =  - \left( {1 + \sqrt {17} } \right)\) thì giá trị của hai hàm số đã cho bằng nhau.


Từ khóa tìm kiếm Google: giải câu 31 trang 56 sbt Toán 9 tập 2, giải bài tập 31 trang 56 sbt Toán 9 tập 2, câu 31 trang 56 sbt Toán 9 tập 2, Câu 31 bài 5 trang 56 - sbt Toán 9 tập 2

Bình luận

Giải bài tập những môn khác