Giải bài 27 trang 55 sbt toán 9 tập 2: Công thức nghiệm thu gọn

Bài 27: trang 55 sbt Toán 9 tập 2

Xác định a, b’, c trong mỗi phương trình, rồi giải phương trình bằng công thức nghiệm thu gọn:

a) \(5{x^2} - 6x - 1 = 0\)

b) \( - 3{x^2} + 14x - 8 = 0\)

c) \(- 7{x^2} + 4x = 3\)

d) \(9{x^2} + 6x + 1 = 0\)


a) \(5{x^2} - 6x - 1 = 0\)

Phương trình có hệ số $a = 5; b’ = -3; c = -1$

\(\Delta ' = b{'^2} - ac = {\left( { - 3} \right)^2} - 5.\left( { - 1} \right) = 9 + 5 = 14 > 0 \)

\(\sqrt {\Delta '} = \sqrt {14} \)

\(\Rightarrow {x_1} = {{ - b' + \sqrt {\Delta '} } \over a} = {{3 + \sqrt {14} } \over 5} \)

\({x_2} = {{ - b' - \sqrt {\Delta '} } \over a} = {{3 - \sqrt {14} } \over 5} \)

Vậy phương trình có hai nghiệm phân biệt là $x_1={{3 + \sqrt {14} } \over 5}; x_2={{3 - \sqrt {14} } \over 5}$

b)     \( - 3{x^2} + 14x - 8 = 0 \)

\(\Leftrightarrow 3{x^2} - 14x + 8 = 0\)

Phương trình có hệ số $a = 3; b’ = -7; c = 8$

\(\Delta ' = {\left( { - 7} \right)^2} - 3.8 = 49 - 23 = 25 > 0 \)

\(\sqrt \Delta = \sqrt {25} = 5 \)

\(\Rightarrow{x_1} = {{7 + 5} \over 3} = 4 \)

\({x_2} = {{7 - 5} \over 3} = {2 \over 3}\)

Vậy phương trình có hai nghiệm phân biệt là $x_1=4; x_2=\frac{2}{3}$

c)     \( - 7{x^2} + 4x = 3 \)

\(\Leftrightarrow 7{x^2} - 4x + 3 = 0\)

Phương trình có hệ số $a = 7; b’ = -2; c = 3$

\(\Delta ' = {\left( { - 2} \right)^2} - 7.3 = 4 - 21 =  - 17 < 0\)

Vậy phương trình vô nghiệm

d) \(9{x^2} + 6x + 1 = 0\)

Phương trình có hệ số $a = 9; b’ = 3; c = 1$

\(\Delta ' = {3^2} - 9.1 = 9 - 9 = 0\)

Phương trình có nghiệm kép:

\({x_1} = {x_2} = {{ - b} \over a} = {{ - 3} \over 9} =  - {1 \over 3}\)


Từ khóa tìm kiếm Google: giải câu 27 trang 55 sbt Toán 9 tập 2, giải bài tập 27 trang 55 sbt Toán 9 tập 2, câu 27 trang 55 sbt Toán 9 tập 2, Câu 27 bài 5 trang 55 - sbt Toán 9 tập 2

Bình luận

Giải bài tập những môn khác