Bài tập về tìm chữ số tận cùng của dạng lũy thừa

5. Tìm chữ số tận cùng của $124^{33}; 178^{345}; 457^{777}$


a. Ta có: $124^{33}=124^{4.8+1}=(124^{4})^{8}.124=\overline{...6}.124=\overline{...4}$

Vậy $124^{33}$ có tận cùng là chữ số 4.

b. Ta có: $178^{345}=178^{4.86+1}=(178^{4})^{86}.178=\overline{...6}.178 = \overline{...8}$

Vậy $178^{345}$ có tận cùng là chữ số 8.

c. Ta có: $457^{777}=457^{4.194+1}=(457^{4})^{194}.457 = \overline{...1}.457=\overline{...7}$

Vậy $457^{777}$ có tận cùng là chữ số 7.


Bình luận

Giải bài tập những môn khác

Giải sgk 6 KNTT

Giải SBT lớp 6 kết nối tri thức

Giải SBT ngữ văn 6 kết nối tri thức
Giải SBT Toán 6 kết nối tri thức
Giải SBT Khoa học tự nhiên 6 kết nối tri thức
Giải SBT Lịch sử và địa lí 6 kết nối tri thức
Giải SBT tin học 6 kết nối tri thức
Giải SBT công dân 6 kết nối tri thức
Giải SBT công nghệ 6 kết nối tri thức
Giải SBT tiếng Anh 6 kết nối tri thức
Giải SBT hoạt động trải nghiệm 6 kết nối tri thức
Giải SBT âm nhạc 6 kết nối tri thức
Giải SBT mĩ thuật 6 kết nối tri thức

Giải sgk 6 CTST

Giải SBT lớp 6 chân trời sáng tạo