Giải câu 2 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bài 2: Trang 24  - sgk giải tích 12

Trong các hình chữ nhật có cùng chu vi 16 cm, hãy tìm hình chữ nhật có diện tích lớn nhất.


Gọi độ dài một cạnh hình chữ nhật là x (cm) thì cạnh còn lại có độ dài là (8-x) (cm) (ĐK $x \in (0;8))$

Khi đó diện tích của hình chữ nhật là $S=x(8-x)=-x^{2}+8x$.

Xét hàm số $y=-x^{2}+8x$ với $x \in (0;8)$

Ta có $y'=-2x+8=0 \Leftrightarrow x=4$.

Bảng biến thiên 

Dựa vào bảng biến thiên $\max S=16$ khi x=4 hay diện tích lớn nhất của hình chữ nhật bằng 16 khi nó là hình vuông cạnh 4 cm.

Cách 2: Sử dụng bất đẳng thức Cauchy cho hai số không âm x, 8-x ta có 

$x(8-x) \leq (\frac{x+8-x}{2})^{2}=16$

Dấu "=" xảy ra khi và chỉ khi x=8-x hay x=4.


Câu hỏi và bài tập trắc nghiệm toán 12 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Từ khóa tìm kiếm Google: giải câu 2 trang 24 sgk giải tích 12, giải bài tập 2 trang 24 giải tích 12, giải tích 12 câu 2 trang 24, Câu 2 Bài 3 sgk giải tích 12

Bình luận

Giải bài tập những môn khác