Giải bài tập 11 trang 60 SBT toán 10 tập 2 chân trời
Bài tập 11. Cho điểm A(1; 4). Gọi B là điểm đối xứng với điểm A qua gốc tọa độ O. Tìm tọa độ của điểm C có tung độ bằng 3, sao cho tam giác ABC vuông tại C.
Trả lời:
Gọi C(x; 3)
Vì B là điểm đối xứng với điểm A qua gốc tọa độ O nên B(-1; -4)
$\overrightarrow{CA}$ = (1 - x; 1), $\overrightarrow{CB}$ = (-1 - x; -7)
Tam giác ABC vuông tại C ta có:
$\overrightarrow{CA} . \overrightarrow{CB} = 0$
$\Leftrightarrow$ (1 - x)(-1 - x) - 7 = 0
$\Leftrightarrow x^{2} = 8$
$\Leftrightarrow x = 2\sqrt{2}$ hoặc $x = -2\sqrt{2}$
Vậy C$(2\sqrt{2}; 3)$ hoặc C$(-2\sqrt{2}; 3)$
Xem toàn bộ: Giải SBT toán 10 chân trời bài 1 Tọa độ của vectơ
Từ khóa tìm kiếm Google: giải toán 10 chân trời tập 2, giải sách kết nối 10 môn toán tập 2, giải toán sách mới bài 10 tập 2, bài 1 Tọa độ của vectơ
Bình luận